Abstract

A practical method is described for inducing fm and phase-locked oscillations in a small He–Ne laser at 6328 Å, with negligible reduction of output power. Internal phase modulation was produced using the electrooptic effect in synthetic crystal quartz. Although crystal quartz has a small electrooptic effect, it has nearly ideal optical properties, and excellent optical surfaces can be produced on it; thus, the laser power is not reduced significantly when the modulator crystal is inserted. The laser spectrum and rf mode beats were observed at several modulation frequencies, and suppression of low-frequency amplitude modulation on the output was obtained with stable fm or phase-locked operation. Agreement with the Harris and McDuff fm theory is discussed.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Russell Targ, Appl. Phys. Letters 5, 202 (1964).
    [CrossRef]
  2. E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).
  3. L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
    [CrossRef]
  4. S. E. Harris, O. P. McDuff, Appl. Phys. Letters 5, 205 (1964).
    [CrossRef]
  5. D. D. Eden, G. H. Thiess, Appl. Opt. 2, 868 (1963).
    [CrossRef]
  6. G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
    [CrossRef]

1965 (2)

E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).

G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
[CrossRef]

1964 (3)

L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
[CrossRef]

S. E. Harris, O. P. McDuff, Appl. Phys. Letters 5, 205 (1964).
[CrossRef]

S. E. Harris, Russell Targ, Appl. Phys. Letters 5, 202 (1964).
[CrossRef]

1963 (1)

Ammann, E. O.

E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).

Eden, D. D.

Fork, R. L.

L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
[CrossRef]

Hargrove, L. E.

L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
[CrossRef]

Harris, S. E.

S. E. Harris, Russell Targ, Appl. Phys. Letters 5, 202 (1964).
[CrossRef]

S. E. Harris, O. P. McDuff, Appl. Phys. Letters 5, 205 (1964).
[CrossRef]

Kenneth Oshman, M.

G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
[CrossRef]

E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).

Massey, G. A.

G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
[CrossRef]

McDuff, O. P.

S. E. Harris, O. P. McDuff, Appl. Phys. Letters 5, 205 (1964).
[CrossRef]

McMurtry, B. J.

E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).

Pollack, M. A.

L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
[CrossRef]

Targ, Russell

G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
[CrossRef]

S. E. Harris, Russell Targ, Appl. Phys. Letters 5, 202 (1964).
[CrossRef]

Thiess, G. H.

Appl. Opt. (1)

Appl. Phys. Letters (4)

S. E. Harris, Russell Targ, Appl. Phys. Letters 5, 202 (1964).
[CrossRef]

L. E. Hargrove, R. L. Fork, M. A. Pollack, Appl. Phys. Letters 5, 4 (1964).
[CrossRef]

S. E. Harris, O. P. McDuff, Appl. Phys. Letters 5, 205 (1964).
[CrossRef]

G. A. Massey, M. Kenneth Oshman, Russell Targ, Appl. Phys. Letters 6, 10 (1965).
[CrossRef]

Proc. IEEE (1)

E. O. Ammann, B. J. McMurtry, M. Kenneth Oshman, Proc. IEEE QE-1, 263 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental configuration.

Fig. 2
Fig. 2

Optical spectrum from scanning interferometer. (a) Phase-locked oscillation. Mode separation 246 Mc/sec. Input power = 5 W. Detuning <50 kc/sec from free-running intermode frequency. (b) Unstable fm oscillation. rf input = 5 W. Detuning ≈ 100 kc/sec. (c) Stable fm oscillation. rf input = 5 W. Detuning ≈ 150 kc/sec. (d) Stable fm oscillation. rf input = 5 W. Detuning ≈ 200 kc/sec.

Metrics