Abstract

1 W of cw laser output has been obtained at room temperature from a sun-pumped, neodymium-doped YAG crystal. The water-cooled laser rod was pumped with a modified Cassegrain sun-tracking telescope consisting of a 61-cm diam paraboloidal primary mirror collector, a water-cooled hyperbolic-cylindric secondary mirror and a hemicircular cylindric tertiary mirror. The cylindrical image volume was coincident with 24 mm of the 3-mm by 30-mm YAG rod. The spike-free output was obtained for hours at a time with a late October sun at a 42° North latitude. Using the same primary mirror and near-unity numerical aperture refractors, approximately 1.25 W were obtained in 7 msec pulses from an uncooled, sun-pumped, neodymium-doped, glass rod. Further refinements in the telescope and the laser crystal, and a space environment, should allow 1 W of laser output to be generated by using a 30-cm diam collector.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Young, “Study and Experimentation to Obtain Sun-Pumped Laser Communications Transmitter”, Final Rept. under contract, American Optical Co., Southbridge, Mass. (Dec.1965).
  2. J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
    [CrossRef]
  3. E. Snitzer, Phys. Rev. Letters 7, 444 (1961).
    [CrossRef]
  4. V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
    [CrossRef]
  5. C. J. Koester, D. A. LaMarre, J. Opt. Soc. Am. 52, 595 (1962).
  6. G. R. Simpson, J. Opt. Soc. Am. 52, 595 (1962).
  7. C. G. Young, J. W. Kantorski, Appl. Opt. 4, 1675 (1965).
    [CrossRef]
  8. J. E. Geusic (private communication).
  9. C. G. Young, Appl. Phys. Letters 2, 151 (1963).
    [CrossRef]
  10. G. R. Simpson, Appl. Opt. 3, 783 (1964).
    [CrossRef]
  11. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
    [CrossRef]
  12. Z. J. Kiss, R. C. Duncan, Appl. Phys. Letters 5, 200 (1964).
    [CrossRef]

1965 (2)

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

C. G. Young, J. W. Kantorski, Appl. Opt. 4, 1675 (1965).
[CrossRef]

1964 (4)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

Z. J. Kiss, R. C. Duncan, Appl. Phys. Letters 5, 200 (1964).
[CrossRef]

G. R. Simpson, Appl. Opt. 3, 783 (1964).
[CrossRef]

J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
[CrossRef]

1963 (1)

C. G. Young, Appl. Phys. Letters 2, 151 (1963).
[CrossRef]

1962 (2)

C. J. Koester, D. A. LaMarre, J. Opt. Soc. Am. 52, 595 (1962).

G. R. Simpson, J. Opt. Soc. Am. 52, 595 (1962).

1961 (1)

E. Snitzer, Phys. Rev. Letters 7, 444 (1961).
[CrossRef]

Duncan, R. C.

Z. J. Kiss, R. C. Duncan, Appl. Phys. Letters 5, 200 (1964).
[CrossRef]

Evtuhov, V.

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

Geusic, J. E.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
[CrossRef]

J. E. Geusic (private communication).

Kantorski, J. W.

Kiss, Z. J.

Z. J. Kiss, R. C. Duncan, Appl. Phys. Letters 5, 200 (1964).
[CrossRef]

Koester, C. J.

C. J. Koester, D. A. LaMarre, J. Opt. Soc. Am. 52, 595 (1962).

Kurtz, S. K.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

LaMarre, D. A.

C. J. Koester, D. A. LaMarre, J. Opt. Soc. Am. 52, 595 (1962).

Marcos, H. M.

J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
[CrossRef]

Neeland, J. K.

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

Simpson, G. R.

G. R. Simpson, Appl. Opt. 3, 783 (1964).
[CrossRef]

G. R. Simpson, J. Opt. Soc. Am. 52, 595 (1962).

Snitzer, E.

E. Snitzer, Phys. Rev. Letters 7, 444 (1961).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

Wemple, S. H.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

Young, C. G.

C. G. Young, J. W. Kantorski, Appl. Opt. 4, 1675 (1965).
[CrossRef]

C. G. Young, Appl. Phys. Letters 2, 151 (1963).
[CrossRef]

C. G. Young, “Study and Experimentation to Obtain Sun-Pumped Laser Communications Transmitter”, Final Rept. under contract, American Optical Co., Southbridge, Mass. (Dec.1965).

Appl. Opt. (2)

Appl. Phys. Letters (5)

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

J. E. Geusic, H. M. Marcos, L. G. Van Uitert, Appl. Phys. Letters 4, 182 (1964).
[CrossRef]

C. G. Young, Appl. Phys. Letters 2, 151 (1963).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, S. H. Wemple, Appl. Phys. Letters 4, 141 (1964).
[CrossRef]

Z. J. Kiss, R. C. Duncan, Appl. Phys. Letters 5, 200 (1964).
[CrossRef]

J. Opt. Soc. Am. (2)

C. J. Koester, D. A. LaMarre, J. Opt. Soc. Am. 52, 595 (1962).

G. R. Simpson, J. Opt. Soc. Am. 52, 595 (1962).

Phys. Rev. Letters (1)

E. Snitzer, Phys. Rev. Letters 7, 444 (1961).
[CrossRef]

Other (2)

J. E. Geusic (private communication).

C. G. Young, “Study and Experimentation to Obtain Sun-Pumped Laser Communications Transmitter”, Final Rept. under contract, American Optical Co., Southbridge, Mass. (Dec.1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The 61-cm diam, sun-tracking, equatorial mount solar collector. The water-cooled laser is mounted forward of the bucket.

Fig. 2
Fig. 2

High numerical aperture refractors for end-pumping Nd-glass laser and the glass-clad laser rod. The silver foil reflector returns light that has scattered out of the laser rod.

Fig. 3
Fig. 3

Liquid-clad glass fiber configuration. There is a silver-foil mirror around the tube at its entrance end to reflect high-angle pump light.

Fig. 4
Fig. 4

The silver-foil reflecting cone condenser. The input end matches in size the solar image produced by the primary mirror and the opposite end matches the size of the laser rod (not to scale).

Fig. 5
Fig. 5

Optical schematic of the modified Cassegrain telescope used to sun-pump YAG. Through the use of a cylindric secondary mirror, the solar image volume matches in diameter and shape the laser crystal (not to scale).

Fig. 6
Fig. 6

The hyperbolic–cylindric mirror assembly. The 3-mm by 30-mm YAG crystal is visible through the glass water jacket. The tertiary mirror has been removed.

Metrics