Abstract

Corning Glass Works has recently developed a series of inorganic bulk photochromic materials. The present paper is concerned with the results of an extensive laboratory investigation of their properties. It is shown that the fatigueless reversibility and the optical characteristics of these glasses hold definite. promise for several applications.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Armistead, S. D. Stookey, Science 144, 150 (1964); U.S. Patent3,208,860, 8Sept.1965.
    [CrossRef] [PubMed]
  2. S. D. Stookey, Bull. Am. Phys. Soc. 9, 64 (1964).
  3. G. P. Smith, in VII International Congress on GlassBrussels, 27 June–3 July 1965 (Gordon and Breach, New York, 1966).
  4. B. Justice, F. B. Leibold, Inform. Display 2, 23 (1965).
  5. R. J. Araujo, Corning Glass Works (private communication).
  6. G. K. Megla, “Photochromic Glass as Storage Medium,” SPSE Symposium on Photography in Information Storage and Retrieval, Washington, D. C., 21–23 Oct. 1965.
  7. W. J. Baldwin, Corning Glass Works (private communication).
  8. R. Daly, S. D. Sims, Appl. Opt. 3, 1063 (1964).
    [CrossRef]
  9. F. J. McClung, R. W. Hellwarth, J. Appl. Phys. 33, 828 (1962).
    [CrossRef]
  10. J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

1965 (1)

B. Justice, F. B. Leibold, Inform. Display 2, 23 (1965).

1964 (4)

W. H. Armistead, S. D. Stookey, Science 144, 150 (1964); U.S. Patent3,208,860, 8Sept.1965.
[CrossRef] [PubMed]

S. D. Stookey, Bull. Am. Phys. Soc. 9, 64 (1964).

J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

R. Daly, S. D. Sims, Appl. Opt. 3, 1063 (1964).
[CrossRef]

1962 (1)

F. J. McClung, R. W. Hellwarth, J. Appl. Phys. 33, 828 (1962).
[CrossRef]

Araujo, R. J.

R. J. Araujo, Corning Glass Works (private communication).

Armistead, W. H.

W. H. Armistead, S. D. Stookey, Science 144, 150 (1964); U.S. Patent3,208,860, 8Sept.1965.
[CrossRef] [PubMed]

Baldwin, W. J.

W. J. Baldwin, Corning Glass Works (private communication).

Daly, R.

Hellwarth, R. W.

F. J. McClung, R. W. Hellwarth, J. Appl. Phys. 33, 828 (1962).
[CrossRef]

Justice, B.

B. Justice, F. B. Leibold, Inform. Display 2, 23 (1965).

Kafalas, P.

J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

Leibold, F. B.

B. Justice, F. B. Leibold, Inform. Display 2, 23 (1965).

Masters, J. I.

J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

McClung, F. J.

F. J. McClung, R. W. Hellwarth, J. Appl. Phys. 33, 828 (1962).
[CrossRef]

Megla, G. K.

G. K. Megla, “Photochromic Glass as Storage Medium,” SPSE Symposium on Photography in Information Storage and Retrieval, Washington, D. C., 21–23 Oct. 1965.

Murray, E. N. E.

J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

Sims, S. D.

Smith, G. P.

G. P. Smith, in VII International Congress on GlassBrussels, 27 June–3 July 1965 (Gordon and Breach, New York, 1966).

Stookey, S. D.

W. H. Armistead, S. D. Stookey, Science 144, 150 (1964); U.S. Patent3,208,860, 8Sept.1965.
[CrossRef] [PubMed]

S. D. Stookey, Bull. Am. Phys. Soc. 9, 64 (1964).

Appl. Opt. (1)

Bull. Am. Phys. Soc. (2)

J. I. Masters, P. Kafalas, E. N. E. Murray, Bull. Am. Phys. Soc. 9, 66 (1964).

S. D. Stookey, Bull. Am. Phys. Soc. 9, 64 (1964).

Inform. Display (1)

B. Justice, F. B. Leibold, Inform. Display 2, 23 (1965).

J. Appl. Phys. (1)

F. J. McClung, R. W. Hellwarth, J. Appl. Phys. 33, 828 (1962).
[CrossRef]

Science (1)

W. H. Armistead, S. D. Stookey, Science 144, 150 (1964); U.S. Patent3,208,860, 8Sept.1965.
[CrossRef] [PubMed]

Other (4)

G. P. Smith, in VII International Congress on GlassBrussels, 27 June–3 July 1965 (Gordon and Breach, New York, 1966).

R. J. Araujo, Corning Glass Works (private communication).

G. K. Megla, “Photochromic Glass as Storage Medium,” SPSE Symposium on Photography in Information Storage and Retrieval, Washington, D. C., 21–23 Oct. 1965.

W. J. Baldwin, Corning Glass Works (private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Activation of photochromic glass with sunlight and xenon arc lamp.

Fig. 2
Fig. 2

Attainable activation levels of photochromic glass of different thickness at various light power densities.

Fig. 3
Fig. 3

Bleaching of photochromic glass with constant bleaching power density at various activation levels.

Fig. 4
Fig. 4

D–logE curves for photochromic material.

Fig. 5
Fig. 5

D–logE curves for activation and bleaching.

Fig. 6
Fig. 6

Fading rates of slow and fast fading photochromic glass at room temperature.

Fig. 7
Fig. 7

Fading rates of slow and fast fading photochromic glass at low temperatures.

Fig. 8
Fig. 8

Energy vs power density diagrams for photochromic material.

Fig. 9
Fig. 9

Energy vs power density diagrams of activated and bleached photochromic glasses.

Fig. 10
Fig. 10

Thermal fading rates of photochromic glass at high temperatures.

Fig. 11
Fig. 11

Absorption spectra of bleached and activated photochromic glass.

Fig. 12
Fig. 12

Influence of the probing wavelength and of the temperature on activated photochromic glass.

Fig. 13
Fig. 13

Light diffusion through photochromic glass at various light energies.

Fig. 14
Fig. 14

Gradation of illumination in thin photochromic layers.

Fig. 15
Fig. 15

Transmissivity of bleached and activated photochromic glass at λ = 620 mμ for various activation energies.

Fig. 16
Fig. 16

Digital information as dark or light spots on bleached or activated photochromic glass.

Fig. 17
Fig. 17

Analog information storage, erasing, and retrieval device.

Fig. 18
Fig. 18

Photochromic glass as display screen.

Tables (2)

Tables Icon

Table I Gamma Numbers of Activated (γACT) and Bleached (γBL) Photochromic Glasses

Tables Icon

Table II p-Factor of Fast and Slow Fading Photochromic Glasses

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

D = 10 log ( I 1 / I 2 ) = 10 log T - 1 in dB ,
[ d ( x 1 + x 2 ) ] / dt = m 1 ( A 1 ° - x 1 ) + m 2 ( A 2 ° - x 2 ) ,
N = E / h c = E λ / 2 × 10 13 ( photons cm - 2 dB - 1 )
γ = tan α = ( D 2 - D 1 ) / log E 2 - log E 1
[ d ( x 1 + x 2 ) ] / d t = n 1 x 1 2 + n 2 x 2 2 + n 3 I ( x 1 + x 2 ) ,
F ( T , t ) = ( 1 - D NF / D ACT ) × 100.
E = I × t ,
Δ D = f ( I × t p ) ,
I 1 / I 2 = ( t 2 / t 1 ) p .
p = γ t / γ I ,
p = ( log I 1 - log I 2 ) / ( log t 2 - log t 1 ) ,
k = a × s ,
I 2 = I 1 e - k d .
T = I 2 / I 1 = e - k d .
D = 4.34 k d [ dB ] .
k = K ( x + D ) ,
x = x 0 ( 1 - e k I t ) ,
T ( d , t ) = I 2 / I 1 = exp [ - k 1 ( 1 - e - k I t ) + k ] d .

Metrics