Abstract

Transmittances of LiF, MgF2, CaF2, BaF2, Al2O3, and fused SiO2 were measured from 1050 Å to 3000 Å before and after irradiation by 1014 electrons/cm2 first at 1.0 MeV and then at 2.0 MeV. Similar measurements were made with 1014 electrons/cm2 at 2.0 MeV using Al2O3 to shield fused SiO2, ADP, calcite, and Corning glass filters 9–54 and 7–54 from the direct electron beam. The electron energy and dose represent what one might expect to encounter in the artificial radiation belt after one year in a circular, near polar orbit at 1400 km. From these measurements it is concluded MgF2, BaF2, and Al2O3 have the greatest potential for space applications in the uv.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Hess. J. Geophys. Res. 68, 667 (1963).
    [CrossRef]
  2. Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
    [CrossRef]
  3. A. Duncanson, R. W. Stevenson, Proc. Phys. Soc. (London) 72, 1001 (1958).
    [CrossRef]
  4. E. Mollwo, Nachr. Gesell. Wiss. Gottingen 6, 79 (1934).
  5. D. Messner, A. Smakula, Phys. Rev. 120, 1162 (1960).
    [CrossRef]
  6. P. W. Levy, Phys. Rev. 123, 1226 (1961).
    [CrossRef]
  7. C. M. Nelson, R. A. Weeks, J. Appl. Phys. 32, 883 (1961).
    [CrossRef]
  8. W. C. Johnson, Rev. Sci. Instr. 35, 1375 (1964).
    [CrossRef]
  9. I. H. Malitson, M. J. Dodge, J. Opt. Soc. Am. 55, 1583 (1965).
    [CrossRef]
  10. I. H. Malitson, M. J. Dodge, Natl. Bur. Std. Rept. No. 8943 (August1965).

1965 (1)

I. H. Malitson, M. J. Dodge, J. Opt. Soc. Am. 55, 1583 (1965).
[CrossRef]

1964 (1)

W. C. Johnson, Rev. Sci. Instr. 35, 1375 (1964).
[CrossRef]

1963 (1)

W. N. Hess. J. Geophys. Res. 68, 667 (1963).
[CrossRef]

1962 (1)

Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
[CrossRef]

1961 (2)

P. W. Levy, Phys. Rev. 123, 1226 (1961).
[CrossRef]

C. M. Nelson, R. A. Weeks, J. Appl. Phys. 32, 883 (1961).
[CrossRef]

1960 (1)

D. Messner, A. Smakula, Phys. Rev. 120, 1162 (1960).
[CrossRef]

1958 (1)

A. Duncanson, R. W. Stevenson, Proc. Phys. Soc. (London) 72, 1001 (1958).
[CrossRef]

1934 (1)

E. Mollwo, Nachr. Gesell. Wiss. Gottingen 6, 79 (1934).

Dodge, M. J.

I. H. Malitson, M. J. Dodge, J. Opt. Soc. Am. 55, 1583 (1965).
[CrossRef]

I. H. Malitson, M. J. Dodge, Natl. Bur. Std. Rept. No. 8943 (August1965).

Duncanson, A.

A. Duncanson, R. W. Stevenson, Proc. Phys. Soc. (London) 72, 1001 (1958).
[CrossRef]

Hess, W. N.

W. N. Hess. J. Geophys. Res. 68, 667 (1963).
[CrossRef]

Johnson, W. C.

W. C. Johnson, Rev. Sci. Instr. 35, 1375 (1964).
[CrossRef]

Kato, R.

Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
[CrossRef]

Levy, P. W.

P. W. Levy, Phys. Rev. 123, 1226 (1961).
[CrossRef]

Malitson, I. H.

I. H. Malitson, M. J. Dodge, J. Opt. Soc. Am. 55, 1583 (1965).
[CrossRef]

I. H. Malitson, M. J. Dodge, Natl. Bur. Std. Rept. No. 8943 (August1965).

Matsui, E.

Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
[CrossRef]

Messner, D.

D. Messner, A. Smakula, Phys. Rev. 120, 1162 (1960).
[CrossRef]

Mollwo, E.

E. Mollwo, Nachr. Gesell. Wiss. Gottingen 6, 79 (1934).

Nelson, C. M.

C. M. Nelson, R. A. Weeks, J. Appl. Phys. 32, 883 (1961).
[CrossRef]

Smakula, A.

D. Messner, A. Smakula, Phys. Rev. 120, 1162 (1960).
[CrossRef]

Stevenson, R. W.

A. Duncanson, R. W. Stevenson, Proc. Phys. Soc. (London) 72, 1001 (1958).
[CrossRef]

Uchida, Y.

Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
[CrossRef]

Weeks, R. A.

C. M. Nelson, R. A. Weeks, J. Appl. Phys. 32, 883 (1961).
[CrossRef]

J. Appl. Phys. (1)

C. M. Nelson, R. A. Weeks, J. Appl. Phys. 32, 883 (1961).
[CrossRef]

J. Geophys. Res. (1)

W. N. Hess. J. Geophys. Res. 68, 667 (1963).
[CrossRef]

J. Opt. Soc. Am. (1)

I. H. Malitson, M. J. Dodge, J. Opt. Soc. Am. 55, 1583 (1965).
[CrossRef]

J. Quant. Spectry. Radiative Transfer (1)

Y. Uchida, R. Kato, E. Matsui, J. Quant. Spectry. Radiative Transfer 2, 589 (1962).
[CrossRef]

Nachr. Gesell. Wiss. Gottingen (1)

E. Mollwo, Nachr. Gesell. Wiss. Gottingen 6, 79 (1934).

Phys. Rev. (2)

D. Messner, A. Smakula, Phys. Rev. 120, 1162 (1960).
[CrossRef]

P. W. Levy, Phys. Rev. 123, 1226 (1961).
[CrossRef]

Proc. Phys. Soc. (London) (1)

A. Duncanson, R. W. Stevenson, Proc. Phys. Soc. (London) 72, 1001 (1958).
[CrossRef]

Rev. Sci. Instr. (1)

W. C. Johnson, Rev. Sci. Instr. 35, 1375 (1964).
[CrossRef]

Other (1)

I. H. Malitson, M. J. Dodge, Natl. Bur. Std. Rept. No. 8943 (August1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Transmittance of LiF before and after irradiation by 1014 electrons/cm2 at 1.0 MeV and at 2.0 MeV.

Fig. 2
Fig. 2

Transmittance of MgF2 before and after irradiation by 1014 electrons/cm2 at 1.0 MeV and at 2.0 MeV.

Fig. 3
Fig. 3

Transmittance of CaF2 before and after irradiation by 1014 electrons/cm2 at 1.0 MeV and at 2.0 MeV.

Fig. 4
Fig. 4

Transmittance of BaF2 before and after irradiation by 1014 electrons/cm2 at 1.0 MeV and at 2.0 MeV.

Fig. 5
Fig. 5

Transmittance of Al2O3 before, and after irradiation by 1014 electrons/cm at 1.0 MeV and at 2.0 MeV, and after irradiation by 2 × 1014 electrons/cm2 at 1.0 MeV and 7 × 1014 electrons/cm2 at 2.0 MeV.

Fig. 6
Fig. 6

Transmittance of fused SiO2 before and after irradiation by 1014 electrons/cm2 at 1.0 MeV and at 2.0 MeV.

Fig. 7
Fig. 7

Transmittance of Corning 7940 fused SiO2 before and after irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Fig. 8
Fig. 8

Transmittance of Dynasil 150A fused SiO2 before and after irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Fig. 9
Fig. 9

Transmittance of ADP before and after irradiation resulting from irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Fig. 10
Fig. 10

Transmittance of calcite before and after irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Fig. 11
Fig. 11

Transmittance of Corning 9–54 (Vycor) before and after irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Fig. 12
Fig. 12

Transmittance of Corning 7–54 before and after irradiation resulting from 1014 electrons/cm2 at 2.0 MeV incident on a sapphire shield.

Tables (2)

Tables Icon

Table I Optical Material Characteristics

Tables Icon

Table II Optical Material Characteristics

Metrics