Abstract

Measurements of the reflecting and polarizing properties of various soils, sands, and vegetation in the visible- and near-ir spectral regions show that dark surfaces polarize the reflected radiation strongly while highly reflecting surfaces have relatively weak polarizing properties. In general, the reflectance of mineral surfaces increases, and the degree of polarization of the reflected radiation decreases, with increasing wavelength and increasing angle of incidence. There is little or no indication of specular reflection from the surfaces for which measurements were made. Introduction of the reflection data into the equation of radiative transfer for clear and slightly turbid models of the earth’s atmosphere shows that the upward radiation that would be incident on a high-altitude aircraft or satellite would be dominated by surface-reflected radiation for the red and near-ir regions over highly reflecting surfaces such as deserts, whereas atmospheric scattering is most important for short wavelengths and dark surfaces. Because of polarization effects, atmospheric transmission of optical contrasts is better in one orthogonal intensity component than the other, the difference being sufficient to merit polarizing optics in reconnaissance instrumentation under certain conditions.

© 1966 Optical Society of America

Full Article  |  PDF Article
Related Articles
Electrooptical Remote Sensing Methods as Nondestructive Testing and Measuring Techniques in Agriculture

Victor I. Myers and William A. Allen
Appl. Opt. 7(9) 1819-1838 (1968)

Polarimetry of Mars

K. L. Coulson
Appl. Opt. 8(7) 1287-1294 (1969)

Anisotropic Reflectance Characteristics of Natural Earth Surfaces

B. Brennan and W. R. Bandeen
Appl. Opt. 9(2) 405-412 (1970)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (24)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription