Abstract

The radiometric considerations for fifteen forest fire surveillance and detection systems are reviewed. The system response is optimized in the 3–6-μ spectral region. A formulation of system noise-equivalent temperature is presented in terms of operational performance requirements and start-of-the-art component parameters. The radiometric criteria are investigated for detection of incipient forest fires and mapping of terrain background. Obscuration of fire targets by timber canopies is discussed. A prototype fire detection system based on these considerations is being evaluated.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. N. Hirsch, “Possible Applications of Electronic Devices to Forest Fire Detection.” U.S. Forest Serv., Intermountain Forest and Range Exp. Sta., Res. Note No. 91, 8 pp. (1962).
  2. S. N. Hirsch, in Proceedings of the Western Forest Fire Committee. (WF and C Assn., Portland, Ore., 1964).
  3. S. N. Hirsch, in Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1962), p. 295.
  4. W. R. Fredrickson, N. Ginsburg, R. Paulson, “Infrared Spectral Emissivity of Terrain.” Final Rept. Syracuse Univ. Res. Inst., ASTIA Doc. No. AD 155552, WADC-TR-58–2229 (1958).
  5. C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.
  6. R. C. Jones, D. Goodwin, G. Pullan, “Standard Procedure for Testing Infrared Devices”, Office of the Director of Defense Research and Engineering (Sept.1960).

Campen, C. F.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Cole, A. E.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Condron, T. P.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Fredrickson, W. R.

W. R. Fredrickson, N. Ginsburg, R. Paulson, “Infrared Spectral Emissivity of Terrain.” Final Rept. Syracuse Univ. Res. Inst., ASTIA Doc. No. AD 155552, WADC-TR-58–2229 (1958).

Ginsburg, N.

W. R. Fredrickson, N. Ginsburg, R. Paulson, “Infrared Spectral Emissivity of Terrain.” Final Rept. Syracuse Univ. Res. Inst., ASTIA Doc. No. AD 155552, WADC-TR-58–2229 (1958).

Goodwin, D.

R. C. Jones, D. Goodwin, G. Pullan, “Standard Procedure for Testing Infrared Devices”, Office of the Director of Defense Research and Engineering (Sept.1960).

Hirsch, S. N.

S. N. Hirsch, “Possible Applications of Electronic Devices to Forest Fire Detection.” U.S. Forest Serv., Intermountain Forest and Range Exp. Sta., Res. Note No. 91, 8 pp. (1962).

S. N. Hirsch, in Proceedings of the Western Forest Fire Committee. (WF and C Assn., Portland, Ore., 1964).

S. N. Hirsch, in Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1962), p. 295.

Jones, R. C.

R. C. Jones, D. Goodwin, G. Pullan, “Standard Procedure for Testing Infrared Devices”, Office of the Director of Defense Research and Engineering (Sept.1960).

Paulson, R.

W. R. Fredrickson, N. Ginsburg, R. Paulson, “Infrared Spectral Emissivity of Terrain.” Final Rept. Syracuse Univ. Res. Inst., ASTIA Doc. No. AD 155552, WADC-TR-58–2229 (1958).

Pullan, G.

R. C. Jones, D. Goodwin, G. Pullan, “Standard Procedure for Testing Infrared Devices”, Office of the Director of Defense Research and Engineering (Sept.1960).

Ripley, W. S.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Sissenwine, N.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Solomon, I.

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

Other (6)

S. N. Hirsch, “Possible Applications of Electronic Devices to Forest Fire Detection.” U.S. Forest Serv., Intermountain Forest and Range Exp. Sta., Res. Note No. 91, 8 pp. (1962).

S. N. Hirsch, in Proceedings of the Western Forest Fire Committee. (WF and C Assn., Portland, Ore., 1964).

S. N. Hirsch, in Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1962), p. 295.

W. R. Fredrickson, N. Ginsburg, R. Paulson, “Infrared Spectral Emissivity of Terrain.” Final Rept. Syracuse Univ. Res. Inst., ASTIA Doc. No. AD 155552, WADC-TR-58–2229 (1958).

C. F. Campen, A. E. Cole, T. P. Condron, W. S. Ripley, N. Sissenwine, I. Solomon, U.S. Air Force, Handbook of Geophysics (The Macmillan Co., New York, 1961), rev. ed.

R. C. Jones, D. Goodwin, G. Pullan, “Standard Procedure for Testing Infrared Devices”, Office of the Director of Defense Research and Engineering (Sept.1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Block diagram of typical line scan ir mapping system. (b) ir line scan imagery. Eight controlled spot fires (0.46 m2 each) are located in precipitous forested terrain.

Fig. 2
Fig. 2

Spectral power curves applicable to forest fire surveillance.

Fig. 3
Fig. 3

Spectral characteristics of typical in receiver components.

Fig. 4
Fig. 4

Transmission of the atmosphere: 16.25 km sea level path, temperature 68.7°F, relative humidity 53%. (From Yates and Taylor, Infrared Transmission of the Atmosphere, NRL Report 5453).

Fig. 5
Fig. 5

Atmospheric attenuation by water predicted from temperature and relative humidity measurements.

Fig. 6
Fig. 6

Attenuation by atmospheric CO2 (3 μ to 6 μ). Expected in the vertical observer-to-ground optical path.

Fig. 7
Fig. 7

Scanning geometry of airborne line scanners.

Fig. 8
Fig. 8

Aircraft altitude and fire size limitations as determined by the fire temperature and the background temperature peak-to-peak variation.

Fig. 9
Fig. 9

Oscilloscope traces of pulse-height discrimination circuit output (upper trace) and input (lower trace). The upper trace shows the discrimination of low level target signals from the larger background signal.

Fig. 10
Fig. 10

Predicted and observed. Obscurations by conifer tree boles. --- Predicted from (1-C tanθ)n. — Observed from model.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = R det ( λ ) T filter ( λ ) T optics ( λ ) T atmosphere ( λ ) ,
E = A ω 0 R ( λ ) N ( λ , T ) d λ = ( A ω / π ) k σ T 4 ,
Δ T = π Δ E / 4 A ω k σ T 3 .
D * = S / N / J ( a Δ f ) ½
E = J
NET = π ( a Δ ) ½ / 4 D A ω k σ T 3 .
S b g = A ω 0 R ( λ ) [ N ( λ , T 2 ) - N ( λ , T 1 ) ] d λ ,
S T = ( a A cos θ / r 2 ) 0 R ( λ ) N ( λ , T 3 ) d λ .
a / H 2 = ( K ω / cos 3 θ ) { 0 R ( λ ) [ N ( λ , T 2 ) - N ( λ , T 1 ) d λ / 0 R ( λ ) N ( λ , T 3 ) d λ } .
a / r 2 NEP / A cos θ 0 R ( λ ) N ( λ , T 3 ) d λ

Metrics