Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), Sec. 8.3.3., pp. 382–86.
  2. L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

1960 (1)

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), Sec. 8.3.3., pp. 382–86.

Cutrona, L. J.

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Leith, E.

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Palermo, C. J.

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Procello, L. J.

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), Sec. 8.3.3., pp. 382–86.

Trans. Inst. Radio Engrs. (1)

L. J. Cutrona, E. Leith, C. J. Palermo, L. J. Procello, Trans. Inst. Radio Engrs. IT-6, 398 (1960).

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), Sec. 8.3.3., pp. 382–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

System to transform E(x,y).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ^ ( P ) = 1 j λ E ^ ( x , y ) e - j k r r d x d y ,
n ^ · r ^ = C
n ^ · r ^ = 0.
r 0 = m ^ · ( r ^ - r ^ p ) = n ^ · r ^ p ,
r = r 0 - Δ r ,
Δ r = n ^ · ( x i ^ + y j ^ ) = l x + m y .
E ^ ( P ^ ) = e - j k r 0 j λ E ^ [ X , y ) e j k Δ r / r ] d x d y .
E ^ ( P ) = K e - j k r 0 E ^ ( x , y ) e j k Δ r d x d y = K e - j k r 0 E ^ ( x , y ) e j k ( l x + m y ) d x d y = K e - j k r 0 E ^ ( x , y ) e - j ( W x X + W y Y ) d x d y ,
r 0 = l u + m v + p ( g + f ) = l u + m v + ( 1 - l 2 - m 2 ) ½ ( g + f )
r 0 = l u + m v + ( g + f ) - [ ( g + f ) / 2 ] ( l 2 + m 2 ) .
l u / f , m v / f .
r 0 = g + f + [ ( u 2 + v 2 ) / 2 f 2 ] ( f - g ) ,

Metrics