Abstract

Stimulated Brillouin scattering from N2 and CH4 using a giant-pulse laser has been observed in an arrangement whereby the laser cannot relase and amplify the back-scattered radiation. This allows a quantitative study of the parameters affecting stimulated Brillouin scattering. The back-scattered beam converges at the same angle at which the laser beam diverges. The Brillouin component can have a narrow spectral width, one-third that of the laser itself, and in some cases can have a duration of only a few nanoseconds. N2 at high pressure can back-scatter as much as 45% of the incident power. The speeds of sound in CH4 and N2 have been measured at lower pressures than were previously reported.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Hagenlocker, W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
    [CrossRef]
  2. S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).
  3. R. W. Minck, J. Appl. Phys. 35, 252 (1964).
    [CrossRef]
  4. D. H. Gill, A. A. Dougal, Phys. Rev. Letters 15, 458 (1965).
  5. T. A. Wiggins, R. V. Wick, D. H. Rank, A. H. Guenther, Appl. Opt. 4, 1203 (1965).
    [CrossRef]
  6. R. G. Brewer, Phys. Rev. 140, A800 (1965).
    [CrossRef]
  7. D. H. Rank, R. V. Wick, T. A. Wiggins, J. Opt. Soc. Am. 56, 174, (1966).
    [CrossRef]
  8. R. V. Wick, T. A. Wiggins, D. H. Rank, Appl. Opt. 5, 473 (1966).
    [CrossRef] [PubMed]
  9. A. Lacam, J. Phys. Radium 14, 351 (1953).
    [CrossRef]
  10. A. H. Hodge, J. Chem. Phys. 5, 974 (1937).
    [CrossRef]
  11. J. Naury, A. Lacam, J. Phys. Radium 15, 301 (1954).
    [CrossRef]

1966 (2)

1965 (4)

E. E. Hagenlocker, W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

D. H. Gill, A. A. Dougal, Phys. Rev. Letters 15, 458 (1965).

T. A. Wiggins, R. V. Wick, D. H. Rank, A. H. Guenther, Appl. Opt. 4, 1203 (1965).
[CrossRef]

R. G. Brewer, Phys. Rev. 140, A800 (1965).
[CrossRef]

1964 (2)

S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).

R. W. Minck, J. Appl. Phys. 35, 252 (1964).
[CrossRef]

1954 (1)

J. Naury, A. Lacam, J. Phys. Radium 15, 301 (1954).
[CrossRef]

1953 (1)

A. Lacam, J. Phys. Radium 14, 351 (1953).
[CrossRef]

1937 (1)

A. H. Hodge, J. Chem. Phys. 5, 974 (1937).
[CrossRef]

Brewer, R. G.

R. G. Brewer, Phys. Rev. 140, A800 (1965).
[CrossRef]

Dougal, A. A.

D. H. Gill, A. A. Dougal, Phys. Rev. Letters 15, 458 (1965).

Dumartin, S.

S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).

Gill, D. H.

D. H. Gill, A. A. Dougal, Phys. Rev. Letters 15, 458 (1965).

Guenther, A. H.

Hagenlocker, E. E.

E. E. Hagenlocker, W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

Hodge, A. H.

A. H. Hodge, J. Chem. Phys. 5, 974 (1937).
[CrossRef]

Lacam, A.

J. Naury, A. Lacam, J. Phys. Radium 15, 301 (1954).
[CrossRef]

A. Lacam, J. Phys. Radium 14, 351 (1953).
[CrossRef]

Minck, R. W.

R. W. Minck, J. Appl. Phys. 35, 252 (1964).
[CrossRef]

Naury, J.

J. Naury, A. Lacam, J. Phys. Radium 15, 301 (1954).
[CrossRef]

Oksengorn, B.

S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).

Rado, W. G.

E. E. Hagenlocker, W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

Rank, D. H.

Vodar, B.

S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).

Wick, R. V.

Wiggins, T. A.

Appl. Opt. (2)

Appl. Phys. Letters (1)

E. E. Hagenlocker, W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

Compt. Rend. (1)

S. Dumartin, B. Oksengorn, B. Vodar, Compt. Rend. 259, 4589 (1964).

J. Appl. Phys. (1)

R. W. Minck, J. Appl. Phys. 35, 252 (1964).
[CrossRef]

J. Chem. Phys. (1)

A. H. Hodge, J. Chem. Phys. 5, 974 (1937).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Radium (2)

J. Naury, A. Lacam, J. Phys. Radium 15, 301 (1954).
[CrossRef]

A. Lacam, J. Phys. Radium 14, 351 (1953).
[CrossRef]

Phys. Rev. (1)

R. G. Brewer, Phys. Rev. 140, A800 (1965).
[CrossRef]

Phys. Rev. Letters (1)

D. H. Gill, A. A. Dougal, Phys. Rev. Letters 15, 458 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for quantitative measurement of Brillouin scattering.

Fig. 2
Fig. 2

Interferograms of (a) methane at 17 atm and (b) nitrogen at 48 atm illustrating the spectral sharpness of the Brillouin scattered light.

Fig. 3
Fig. 3

Time display of power at the photodiode. The first small peak is due to reflection from the lens and cell. The sharp superimposed peak is owing to the Brillouin scattered power. The larger peak is used to monitor the laser output power.

Fig. 4
Fig. 4

Power scattered from N2 as a function of pressure for different input powers in megawatts. The laser was focused symmetrically into a 20-cm cell with a 15-cm lens.

Fig. 5
Fig. 5

Power scattered from N2 in a 20-cm cell for two different converging lenses as a function of laser-input power.

Fig. 6
Fig. 6

Speed of sound in N2 at 300°K as a function of pressure. The dotted line indicates our previous results7, the solid line those of Lacam9 and Hodge.10

Fig. 7
Fig. 7

Speed of sound in CH4 at 300°K as a function of pressure. The dotted line indicates our previous results7, the solid line those of Naury and Lacam.11

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G ~ D P 0 l 1 l 2 d l / A ,

Metrics