Abstract

A method is described for measuring the amplitude and phase of the complex Kerr magnetooptic coefficients. A magnetic metal surface to be measured is switched between its magnetic states at an ac rate, thereby modulating a reflected light beam. By measuring the modulation depth with a synchronous detector and one angle, the two quantities above are determined. The method requires no precision optical equipment as is needed with polarimetric techniques.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Robinson, J. Opt. Soc. Am. 53, 681 (1963).
    [CrossRef]
  2. E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
    [CrossRef]
  3. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]

1963

1958

E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
[CrossRef]

1941

Callaby, D. R.

E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
[CrossRef]

Jones, R. C.

Lee, E. W.

E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
[CrossRef]

Lynch, A. C.

E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
[CrossRef]

Robinson, C. C.

J. Opt. Soc. Am.

Proc. Phys. Soc.

E. W. Lee, D. R. Callaby, A. C. Lynch, Proc. Phys. Soc. 72, 233 (1958).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Arrangement of optical components for measurement of complex Kerr effect.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( R s R p ) = ( r s s r s p r p s r p p ) ( A s A p ) ,
( E x E y ) B = ( B cos α e j ( ω t - δ / 2 ) B sin α e j ( ω t + δ / 2 ) ) .
( E x E y ) D = B ( cos 2 β cos β sin β cos β sin β sin 2 β ) [ ( 2 ) ½ 2 j ( 2 ) ½ 2 j ( 2 ) ½ 2 ( 2 ) ½ 2 ] × ( cos α e - j δ / 2 sin α e + j δ / 2 ) e j ω t
( E x E y ) D = B ( 2 ) ½ 2 ( cos β sin β ) [ cos α e j ( β - δ / 2 ) + j sin α e - j ( β - δ / 2 ) ] e j ω t .
I = B 2 2 [ 1 + sin 2 α sin ( 2 β - δ ) ] .
m = sin 2 α sin ( 2 β - δ ) .
sin ( 2 β - δ ) = 0             δ = 2 β + n π .
m = sin 2 α ,
α m / 2.
r s p / r p p = tan α e j δ

Metrics