Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Balakrishnan, Inst. Radio Engrs. Trans. IT-8, 26 (1962).
  2. W. M. Brown, J. Soc. Ind. Appl. Math. 11, 460 (1963).
    [CrossRef]
  3. J. Connes, Rev. Opt. 40, 45 (1961).
  4. R. A. Hanel, L. W. Chaney, NASA X-650–64–204 (1964).
  5. R. A. Hanel, L. W. Chaney, NASA X-650–65–75 (1965).
  6. O. Lenneman, Thesis, University of Michigan, Ann Arbor, Mich. (1964).

1963 (1)

W. M. Brown, J. Soc. Ind. Appl. Math. 11, 460 (1963).
[CrossRef]

1962 (1)

A. V. Balakrishnan, Inst. Radio Engrs. Trans. IT-8, 26 (1962).

1961 (1)

J. Connes, Rev. Opt. 40, 45 (1961).

Balakrishnan, A. V.

A. V. Balakrishnan, Inst. Radio Engrs. Trans. IT-8, 26 (1962).

Brown, W. M.

W. M. Brown, J. Soc. Ind. Appl. Math. 11, 460 (1963).
[CrossRef]

Chaney, L. W.

R. A. Hanel, L. W. Chaney, NASA X-650–64–204 (1964).

R. A. Hanel, L. W. Chaney, NASA X-650–65–75 (1965).

Connes, J.

J. Connes, Rev. Opt. 40, 45 (1961).

Hanel, R. A.

R. A. Hanel, L. W. Chaney, NASA X-650–64–204 (1964).

R. A. Hanel, L. W. Chaney, NASA X-650–65–75 (1965).

Lenneman, O.

O. Lenneman, Thesis, University of Michigan, Ann Arbor, Mich. (1964).

Inst. Radio Engrs. Trans. (1)

A. V. Balakrishnan, Inst. Radio Engrs. Trans. IT-8, 26 (1962).

J. Soc. Ind. Appl. Math. (1)

W. M. Brown, J. Soc. Ind. Appl. Math. 11, 460 (1963).
[CrossRef]

Rev. Opt. (1)

J. Connes, Rev. Opt. 40, 45 (1961).

Other (3)

R. A. Hanel, L. W. Chaney, NASA X-650–64–204 (1964).

R. A. Hanel, L. W. Chaney, NASA X-650–65–75 (1965).

O. Lenneman, Thesis, University of Michigan, Ann Arbor, Mich. (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Percent mean error due to time jitters in sampling. Sampling interval 0.00023408 cm. Maximum frequency 2500 cm−1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

B ( σ ) = - + A ( δ ) I ( δ ) e j 2 π σ δ d δ ,
B * ( σ ) = h - + A ( δ ) I ( δ ) n = - + d ( δ - n h ) e i 2 π σ δ d δ ,
B * ( σ ) = h - N N A ( n h ) I ( n h ) e j 2 π σ n h .
B * ( σ ) = h - + A ( δ ) I ( δ ) - + d ( δ - n h + ζ n ) e j 2 π σ δ d δ ,
B * ( σ ) = h - N N A ( n h ) I ( n h + ζ n ) e j 2 π σ ( n h + ζ n ) .
I ( n h + ζ n ) = I ( n h ) + f ( n h ) ζ n ,
B * ( σ ) = h - N N A ( n h ) I ( n h ) e j 2 π σ n h e j 2 π σ ζ n + h - N N A ( n h ) f ( n h ) e j 2 π σ n h φ n e j 2 π σ ζ n .
E ( B * - B * ) 2 = B * 2 ( σ ) { 1 - M ζ ( σ ) - σ [ d M ζ ( σ ) / d σ ] } 2 ,
= 100 { [ 1 - M ζ ( σ ) ] - σ [ d M ζ ( σ ) / d σ ] }
p ( ζ ) = ( 2 π S ) - ½ e - ζ 2 / 2 S 2 ,
M ζ ( σ ) = e - ( S 2 ζ 2 / 2 ) .
S = α h             0 < α < 1.
e = 100 { 1 - e - [ ( α h σ ) 2 / 2 ] ( 1 - α 2 h 2 σ 2 ) } .

Metrics