Abstract

Recent developments in ruggedized high-performance multiplier phototubes are described for the uv and visible. The spectral radiant responses of photocathodes with peak quantum efficiencies up to 30% and higher are detailed over the applicable spectral regions. Photoemissive surfaces with two types of spectral responses are included: (a) spectrally selective cathodes of the extreme solar-blind type for the far uv, and (b) cathodes with broad-band sensitivity over wide spectral ranges. The characteristics of dark current (dc and pulse counting), current amplification, equivalent noise input, and environmental conditions are reviewed for the various new tube types covered.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Space Research I-IV (Proceedings of 1960–1963 COSPAR Symposia) (North-Holland Publ. Co., Amsterdam, 1960), I–IV; Space Astrophysics, W. Liller, Ed. (McGraw–Hill Book Co., Inc., New York, 1961).
  2. C. A. Barth, in Dynamics of Manned Lifting Planetary Entry, S. M. Scala, A. C. Harrison, M. Rogers, Eds. (John Wiley & Sons, Inc., New York, 1963), pp. 82–94.
  3. D. P. LeGalley, A. Rosen, Eds., Space Physics (John Wiley & Sons, Inc., New York, 1964).
  4. D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Am. 53, 851 (1963).
    [CrossRef]
  5. H. Friedman, in Physics of the Upper Atmosphere, J. A. Ratcliffe, Ed. (Academic Press Inc., New York, 1960), p. 160.
  6. JEDEC Publ. No. 35, Electronic Industries Assoc., New York (Nov.1961).
  7. L. A. Hall, K. R. Damon, H. E. Hinteregger, in International Space Science Symposium (John Wiley & Sons, Inc., New York, 1963), Wolfgang Priester, Ed., Vol. 3, 3rd ed., p. 745.
  8. C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).
  9. S. W. Duckett, P. H. Metzger, Phys. Rev. 137, A953 (1965).
    [CrossRef]
  10. M. Rome, IEEE Trans. Nucl. Sci. 11, No. 3, 93 (1964)
    [CrossRef]
  11. G. W. Hutchinson, in Progress Nuclear Physics, O. R. Frisch, Ed. (Pergamon Press, Inc., New York, 1960), p. 195.
  12. F. J. Lombard, F. Martin, Rev. Sci. Instr. 32, 200 (1961).
    [CrossRef]
  13. IRE Standards on Electron Tubes: Methods of Testing1962, Part 5 (American Standards Association, New York).

1965 (1)

S. W. Duckett, P. H. Metzger, Phys. Rev. 137, A953 (1965).
[CrossRef]

1964 (1)

M. Rome, IEEE Trans. Nucl. Sci. 11, No. 3, 93 (1964)
[CrossRef]

1963 (1)

1961 (2)

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

F. J. Lombard, F. Martin, Rev. Sci. Instr. 32, 200 (1961).
[CrossRef]

Barth, C. A.

C. A. Barth, in Dynamics of Manned Lifting Planetary Entry, S. M. Scala, A. C. Harrison, M. Rogers, Eds. (John Wiley & Sons, Inc., New York, 1963), pp. 82–94.

Damon, K. R.

L. A. Hall, K. R. Damon, H. E. Hinteregger, in International Space Science Symposium (John Wiley & Sons, Inc., New York, 1963), Wolfgang Priester, Ed., Vol. 3, 3rd ed., p. 745.

Detwiler, C. R.

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

Duckett, S. W.

S. W. Duckett, P. H. Metzger, Phys. Rev. 137, A953 (1965).
[CrossRef]

Friedman, H.

H. Friedman, in Physics of the Upper Atmosphere, J. A. Ratcliffe, Ed. (Academic Press Inc., New York, 1960), p. 160.

Garrett, D. L.

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

Hall, L. A.

L. A. Hall, K. R. Damon, H. E. Hinteregger, in International Space Science Symposium (John Wiley & Sons, Inc., New York, 1963), Wolfgang Priester, Ed., Vol. 3, 3rd ed., p. 745.

Hinteregger, H. E.

L. A. Hall, K. R. Damon, H. E. Hinteregger, in International Space Science Symposium (John Wiley & Sons, Inc., New York, 1963), Wolfgang Priester, Ed., Vol. 3, 3rd ed., p. 745.

Hutchinson, G. W.

G. W. Hutchinson, in Progress Nuclear Physics, O. R. Frisch, Ed. (Pergamon Press, Inc., New York, 1960), p. 195.

Lombard, F. J.

F. J. Lombard, F. Martin, Rev. Sci. Instr. 32, 200 (1961).
[CrossRef]

Martin, F.

F. J. Lombard, F. Martin, Rev. Sci. Instr. 32, 200 (1961).
[CrossRef]

Metzger, P. H.

S. W. Duckett, P. H. Metzger, Phys. Rev. 137, A953 (1965).
[CrossRef]

Patterson, D. A.

Purcell, J. D.

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

Rome, M.

M. Rome, IEEE Trans. Nucl. Sci. 11, No. 3, 93 (1964)
[CrossRef]

Tousey, R.

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

Vaughan, W. H.

Ann. Geophys. (1)

C. R. Detwiler, D. L. Garrett, J. D. Purcell, R. Tousey, Ann. Geophys. 17, 9 (1961).

IEEE Trans. Nucl. Sci. (1)

M. Rome, IEEE Trans. Nucl. Sci. 11, No. 3, 93 (1964)
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

S. W. Duckett, P. H. Metzger, Phys. Rev. 137, A953 (1965).
[CrossRef]

Rev. Sci. Instr. (1)

F. J. Lombard, F. Martin, Rev. Sci. Instr. 32, 200 (1961).
[CrossRef]

Other (8)

IRE Standards on Electron Tubes: Methods of Testing1962, Part 5 (American Standards Association, New York).

G. W. Hutchinson, in Progress Nuclear Physics, O. R. Frisch, Ed. (Pergamon Press, Inc., New York, 1960), p. 195.

Space Research I-IV (Proceedings of 1960–1963 COSPAR Symposia) (North-Holland Publ. Co., Amsterdam, 1960), I–IV; Space Astrophysics, W. Liller, Ed. (McGraw–Hill Book Co., Inc., New York, 1961).

C. A. Barth, in Dynamics of Manned Lifting Planetary Entry, S. M. Scala, A. C. Harrison, M. Rogers, Eds. (John Wiley & Sons, Inc., New York, 1963), pp. 82–94.

D. P. LeGalley, A. Rosen, Eds., Space Physics (John Wiley & Sons, Inc., New York, 1964).

H. Friedman, in Physics of the Upper Atmosphere, J. A. Ratcliffe, Ed. (Academic Press Inc., New York, 1960), p. 160.

JEDEC Publ. No. 35, Electronic Industries Assoc., New York (Nov.1961).

L. A. Hall, K. R. Damon, H. E. Hinteregger, in International Space Science Symposium (John Wiley & Sons, Inc., New York, 1963), Wolfgang Priester, Ed., Vol. 3, 3rd ed., p. 745.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Transmission of various multiplier phototube windows and relative long wavelength cutoff for two far uv cathodes (left ordinate scale). Solar spectral irradiance in W cm−2 Å−1 to 4000 Å (right ordinate scale).

Fig. 2
Fig. 2

Spectral response of several side-window far uv multiplier phototubes; LiF window and reflective cathodes 641J-08 (KBr), 641L-08(CsBr), 641K-08(RbI), 641G-08(CsI).

Fig. 3
Fig. 3

LiF side-window multiplier phototube with reflective photocathode, Type 641–08–18. (a) Outline drawing. (b) Photograph of potted and unpotted tubes.

Fig. 4
Fig. 4

Integral dark current counts for three far-uv side window multiplier phototubes as a function of discriminator level. Total dark current count rate at room temperature is approximately one-half count/sec. Solid line is integral count curve with low-level illumination, ordinate scale not shown.

Fig. 5
Fig. 5

Photograph of removable side-window blastoff tube assembly prior to window removal.

Fig. 6
Fig. 6

Selected frames from high speed movie of window-assembly removal. Upper left: faceplate assembly prior to firing of squib. Upper right: 3 msec after power has been applied to the explosive squib. Lower left: removal of window assembly from phototube opening. Lower right: window assembly in retained position out of the optical path, 50 msec after firing of squib.

Fig. 7
Fig. 7

Spectral response in quantum efficiency for: 541E-05M (semitransparent trialkali cathode, sapphire window), 641E-01 (side-window trialkali cathode, glass window), and two type A-05 tubes (cesium–antimony on 1 mm and 10 mm sapphire windows).

Fig. 8
Fig. 8

Side-window multiplier phototube with trialkali photocathode, tube type 641E–01–18.

Fig. 9
Fig. 9

Large sapphire window multiplier photo tube type 544A-05–11.

Fig. 10
Fig. 10

10-mm thick sapphire window multiplier phototube for Čerenkov radiation detection, tube type 543A-05–14-M17.

Fig. 11
Fig. 11

2.54-cm diam cathode tiralkali photocathode multiplier phototube: tube type 541E-05M-14 (sapphire window faceplate), tube type 541E-01–14 (glass window).

Fig. 12
Fig. 12

Typical current amplification and conditioned anode dark current at 20°C as : function of voltage for type 541E trialkali multiplier phototubes. Circles are dark-current data points at a current amplification of 106 for six tubes after overnight dark conditioning.

Fig. 13
Fig. 13

Pulse-height distribution for 541E-01, trialkali cathode multiplier phototube; (a) dark current, and (b) with weak-light illumination. Tube maintained in dark over-night prior to run.

Fig. 14
Fig. 14

Equivalent noise input, in W (left ordinate) and in lumens (right ordinate) for a trialkali multiplier phototube as a function of current amplification and anode radiant sensitivity at 4100 Å after (a) ½ h in the dark, and (b) 17 h in the dark.

Metrics