Abstract

A search for chemically pumped uv laser action in H2CO due to the thermal decomposition of CH3OOCH3 is reported. Electrode ac discharge, and rf electrodeless discharge spectra of H2CO and CO augmented by chemical excitation via the reaction CH3OOCH3 → 2CH3O → CH3OH + H2CO* are presented. The rate of production of excited state H2CO through thermal decomposition of CH3OOCH3 is estimated by analysis of the kinetics of the reaction to be 2.3 × 1018 cm−3 sec−1. The population inversion ΔF of H2CO required to produce stimulated emission in the 4231-Å vibronic line is calculated to be 3 × 1014 cm−3 as compared to an available ΔF of 1.4 × 1014 cm−3. The possibility of using this thermal decomposition to produce excited collision partners for inducing laser action in other molecular or atomic species is discussed.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Harris, A. C. Edgerton, Proc. Roy. Soc. (London), A168, 1 (1938).
  2. P. L. Hanst, J. G. Calvert, J. Phys. Chem. 63, 104 (1959).
    [CrossRef]
  3. J. R. Henderson, M. Muramoto, J. Chem. Phys. 43, 1215 (1965).
    [CrossRef]
  4. G. W. Robinson, V. E. DiGiorgio, Can. J. Chem. 36, 31 (1958).
    [CrossRef]
  5. J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
    [CrossRef]
  6. For example, see Appl. Opt.Suppl. 2: Chemical Lasers (1965).
  7. J. A. Pople, J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
    [CrossRef]
  8. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [CrossRef]

1965

J. R. Henderson, M. Muramoto, J. Chem. Phys. 43, 1215 (1965).
[CrossRef]

1959

P. L. Hanst, J. G. Calvert, J. Phys. Chem. 63, 104 (1959).
[CrossRef]

1958

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

G. W. Robinson, V. E. DiGiorgio, Can. J. Chem. 36, 31 (1958).
[CrossRef]

J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
[CrossRef]

1957

J. A. Pople, J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
[CrossRef]

1938

E. J. Harris, A. C. Edgerton, Proc. Roy. Soc. (London), A168, 1 (1938).

Calvert, J. G.

P. L. Hanst, J. G. Calvert, J. Phys. Chem. 63, 104 (1959).
[CrossRef]

Coon, J. B.

J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
[CrossRef]

DiGiorgio, V. E.

G. W. Robinson, V. E. DiGiorgio, Can. J. Chem. 36, 31 (1958).
[CrossRef]

Edgerton, A. C.

E. J. Harris, A. C. Edgerton, Proc. Roy. Soc. (London), A168, 1 (1938).

Hanst, P. L.

P. L. Hanst, J. G. Calvert, J. Phys. Chem. 63, 104 (1959).
[CrossRef]

Harris, E. J.

E. J. Harris, A. C. Edgerton, Proc. Roy. Soc. (London), A168, 1 (1938).

Henderson, J. R.

J. R. Henderson, M. Muramoto, J. Chem. Phys. 43, 1215 (1965).
[CrossRef]

J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
[CrossRef]

Hodges, S. E.

J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
[CrossRef]

Muramoto, M.

J. R. Henderson, M. Muramoto, J. Chem. Phys. 43, 1215 (1965).
[CrossRef]

Pople, J. A.

J. A. Pople, J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
[CrossRef]

Robinson, G. W.

G. W. Robinson, V. E. DiGiorgio, Can. J. Chem. 36, 31 (1958).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Sidman, J. W.

J. A. Pople, J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
[CrossRef]

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Can. J. Chem.

G. W. Robinson, V. E. DiGiorgio, Can. J. Chem. 36, 31 (1958).
[CrossRef]

J. Chem. Phys.

J. A. Pople, J. W. Sidman, J. Chem. Phys. 27, 1270 (1957).
[CrossRef]

J. R. Henderson, M. Muramoto, J. Chem. Phys. 43, 1215 (1965).
[CrossRef]

J. Mol. Spectry.

J. B. Coon, S. E. Hodges, J. R. Henderson, J. Mol. Spectry. 2, 99 (1958).
[CrossRef]

J. Phys. Chem.

P. L. Hanst, J. G. Calvert, J. Phys. Chem. 63, 104 (1959).
[CrossRef]

Phys. Rev.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Proc. Roy. Soc. (London)

E. J. Harris, A. C. Edgerton, Proc. Roy. Soc. (London), A168, 1 (1938).

Other

For example, see Appl. Opt.Suppl. 2: Chemical Lasers (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Radio-frequency electrodeless discharge.

Fig. 2
Fig. 2

Ac electrode discharge, heater at 300°C.

Fig. 3
Fig. 3

Ac electrode discharge (no heater).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

CH 3 OOCH 3 200 ° C 2CH 3 O ,
CH 3 O + CH 3 O CH 3 OH + H 2 CO * ,
CH 3 O + H 2 CO CH 3 OH + HCO ,
CH 3 O + HCO CH 3 OH + CO .
2CH 3 OOCH 3 3CH 3 OH + CO .
d N / d t = - N A exp ( - E / k T ) = - N k 1 ( T ) ,
R in ( t ) = 2 N 0 [ 1 - exp ( - k 1 t ) ] ,
d R out / d t = - k 2 R 2 ( t ) .
d R / d t = 2 N 0 k 1 exp ( - k 1 t ) - k 2 R 2 .
R ( t ) ( 2 N 0 k 1 / k 2 ) 1 2 exp ( - 1 2 k 1 t )
d F / d t = 1 2 k 2 R 2 - F / τ N 0 k 1 exp ( - k 1 t ) - F / τ .
F ( t ) [ N 0 k 1 / ( 1 / τ ) - k 1 ] [ exp ( - k 1 t ) - exp ( - t / τ ) ] .
Δ N p ( τ / t ) = ( 8 π 2 ν 3 / 3 c 3 ) ( Δ ν / ν ) ( v τ / t ) ,

Metrics