Abstract

It is shown that an interferometer using one scatter plate and a plane mirror is well suited for testing long focus optical systems. Stability is automatically achieved in this system because of its +1 magnification. Two methods of introducing straight fringes into the field in order to examine a nearly perfect optical system, and a method of making scatter plates to give high-contrast fringe patterns are described.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Newton, Opticks (C. Bell and Sons, Ltd., London, 1931), 4th ed., p. 289.
  2. T. Young, Phil. Trans. 9, 41 (1802).
  3. J. Herschel, Encyclopaedia Metropolitana (printed for Baldwin & Crodock, Cambridge England, 1830), Vol. 2, Part 2, p. 473.
  4. G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 147 (1851).
  5. F. K. Bauchwitz, D. Shoenberg, Nature 156, 142 (1945).
    [CrossRef]
  6. D. Shoenberg, Proc. Cambridge Phil. Soc. 43, 134 (1947).
    [CrossRef]
  7. J. M. Burch, Nature 171, 889 (1953).
    [CrossRef]
  8. J. M. Burch, J. Opt. Soc. Am. 52, 600 (A) (1962).
  9. J. Dyson, Appendix B “Interferometers,” in J. B. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, Calif., 1958), p. 377.
  10. L. C. Martin, Technical Optics (Pitman and Sons, Ltd., London, 1960), Vol. 2, 2nd ed., p. 327.
  11. R. M. Scott, Appl. Opt. 1, 396 (1960).
  12. J. Dyson, J. Opt. Soc. Am. 53, 690 (1963).
    [CrossRef]
  13. See, for example, C. Candler, Modern Interferometers (Hilger and Watts, London, 1951).

1963 (1)

1962 (1)

J. M. Burch, J. Opt. Soc. Am. 52, 600 (A) (1962).

1960 (1)

R. M. Scott, Appl. Opt. 1, 396 (1960).

1953 (1)

J. M. Burch, Nature 171, 889 (1953).
[CrossRef]

1947 (1)

D. Shoenberg, Proc. Cambridge Phil. Soc. 43, 134 (1947).
[CrossRef]

1945 (1)

F. K. Bauchwitz, D. Shoenberg, Nature 156, 142 (1945).
[CrossRef]

1851 (1)

G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 147 (1851).

1802 (1)

T. Young, Phil. Trans. 9, 41 (1802).

Bauchwitz, F. K.

F. K. Bauchwitz, D. Shoenberg, Nature 156, 142 (1945).
[CrossRef]

Burch, J. M.

J. M. Burch, J. Opt. Soc. Am. 52, 600 (A) (1962).

J. M. Burch, Nature 171, 889 (1953).
[CrossRef]

Candler, C.

See, for example, C. Candler, Modern Interferometers (Hilger and Watts, London, 1951).

Dyson, J.

J. Dyson, J. Opt. Soc. Am. 53, 690 (1963).
[CrossRef]

J. Dyson, Appendix B “Interferometers,” in J. B. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, Calif., 1958), p. 377.

Herschel, J.

J. Herschel, Encyclopaedia Metropolitana (printed for Baldwin & Crodock, Cambridge England, 1830), Vol. 2, Part 2, p. 473.

Martin, L. C.

L. C. Martin, Technical Optics (Pitman and Sons, Ltd., London, 1960), Vol. 2, 2nd ed., p. 327.

Newton, I.

I. Newton, Opticks (C. Bell and Sons, Ltd., London, 1931), 4th ed., p. 289.

Scott, R. M.

R. M. Scott, Appl. Opt. 1, 396 (1960).

Shoenberg, D.

D. Shoenberg, Proc. Cambridge Phil. Soc. 43, 134 (1947).
[CrossRef]

F. K. Bauchwitz, D. Shoenberg, Nature 156, 142 (1945).
[CrossRef]

Stokes, G. G.

G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 147 (1851).

Young, T.

T. Young, Phil. Trans. 9, 41 (1802).

Appl. Opt. (1)

R. M. Scott, Appl. Opt. 1, 396 (1960).

J. Opt. Soc. Am. (2)

J. Dyson, J. Opt. Soc. Am. 53, 690 (1963).
[CrossRef]

J. M. Burch, J. Opt. Soc. Am. 52, 600 (A) (1962).

Nature (2)

F. K. Bauchwitz, D. Shoenberg, Nature 156, 142 (1945).
[CrossRef]

J. M. Burch, Nature 171, 889 (1953).
[CrossRef]

Phil. Trans. (1)

T. Young, Phil. Trans. 9, 41 (1802).

Proc. Cambridge Phil. Soc. (1)

D. Shoenberg, Proc. Cambridge Phil. Soc. 43, 134 (1947).
[CrossRef]

Trans. Cambridge Phil. Soc. (1)

G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 147 (1851).

Other (5)

I. Newton, Opticks (C. Bell and Sons, Ltd., London, 1931), 4th ed., p. 289.

J. Herschel, Encyclopaedia Metropolitana (printed for Baldwin & Crodock, Cambridge England, 1830), Vol. 2, Part 2, p. 473.

J. Dyson, Appendix B “Interferometers,” in J. B. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, Calif., 1958), p. 377.

L. C. Martin, Technical Optics (Pitman and Sons, Ltd., London, 1960), Vol. 2, 2nd ed., p. 327.

See, for example, C. Candler, Modern Interferometers (Hilger and Watts, London, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic arrangement for testing a concave mirror using an interferometer with two identical scatterplates. M is the concave mirror under test; P1 and P2 are two identical scatter plates (P2 has been rotated 180° in azimuth with respect to P1 such that A and A′ are identical scatterers); L is the lens used to focus source S on M; and E is the position of the eye or camera. The inset shows how +1 magnification is obtained. P1′ is the scatter plate and P2′ is the plane mirror.

Fig. 2
Fig. 2

Diagram illustrating method of introducing a plane-parallel plate into the system to obtain tilt between reference and test wavefronts. M is the concave mirror under test; P is the position of the scatter plate and plane mirror: and PP is the plane-parallel plate.

Fig. 3
Fig. 3

Photographs showing the fringe patterns for (a) a nearly perfect optical system, and (b) an optical system with a small amount of spherical aberration when the plane-parallel plate is used to obtain straight fringes.

Fig. 4
Fig. 4

Photographs showing the fringe patterns for (a) a nearly perfect optical system, and (b) an optical system with a small amount of spherical aberration when a separation of the scatter plate and plane mirror is used to obtain straight fringes.

Fig. 5
Fig. 5

Contrast photographs obtained using the scatter plates made with the (a) 12-μ and (b) 60-mμ grinding powders.

Tables (1)

Tables Icon

Table I Distribution of Pit Sizes on Scatter Plates Made Using 12-μ Grinding Powder

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ 1 = B ( x 2 + y 2 ) 2 + F ( x 2 + y 2 ) y + C ( x 2 + y 2 ) + g x + h y + a ( x 2 + y 2 ) ,
δ 2 = B ( x 2 + y 2 ) 2 - F ( x 2 + y 2 ) y + C ( x 2 - y 2 ) - g x - h y + a ( x 2 + y 2 ) ,
OPD = 2 B ( x 2 + y 2 ) 2 + 2 C ( x 2 - y 2 ) + 2 a ( x 2 + y 2 ) .
OPD = ( 2 t α / n r ) ( n - 1 ) x ,
OPD = d 2 / 8 r ( f # ) 2 ,
d 2 f # ( 2 r OPD ) 1 2
OPD = 2 B ( x 2 + y 2 ) 2 - 4 C y 2 .
V = 2 ( 1 - k ) / ( 2 - k ) ,

Metrics