Abstract

A procedure is described for determining the amount and distribution of water vapor along a slant path through the atmosphere above 13.7 km. A multilayer analysis is used in which the transmittance of each layer is calculated and the accumulative effect obtained at the altitude of observation. The method depends upon the contribution of each line to the absorptance in a finite spectral region.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
    [CrossRef]
  2. C. Cumming, D. J. G. McKinnon, W. R. Stephenson, Canadian Armament Research and Development Establishment, private communications (1963–1964).
  3. D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).
  4. W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).
  5. J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
    [CrossRef]
  6. D. M. Dennison, Phys. Rev. 31, 503 (1928).
    [CrossRef]
  7. H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Am. 46, 1060 (1956).
    [CrossRef]
  8. S. G. Rautian, Soviet Phys.—Uspekhi 66, 475 (1958).
  9. A. Bemporad, Rend. Acc. Lincei., Roma, Ser. 5 16, 66 (1907); Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D. C., 1951), 6th ed., p. 422.
  10. M. Gutnick, Air Force Surveys in Geophysics No. 147 (1962).
  11. H. J. Mastenbrook, in Humidity and Moisture (Reinhold, New York, 1964), Vol. 2.
  12. E. J. Williamson, Mem. Soc. Roy. Sci. Liege 9, 327 (1964).
  13. J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 89, 332 (1963).
    [CrossRef]

1964 (2)

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

E. J. Williamson, Mem. Soc. Roy. Sci. Liege 9, 327 (1964).

1963 (1)

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 89, 332 (1963).
[CrossRef]

1962 (1)

M. Gutnick, Air Force Surveys in Geophysics No. 147 (1962).

1961 (1)

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

1959 (1)

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

1958 (1)

S. G. Rautian, Soviet Phys.—Uspekhi 66, 475 (1958).

1956 (1)

1944 (1)

J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[CrossRef]

1928 (1)

D. M. Dennison, Phys. Rev. 31, 503 (1928).
[CrossRef]

1907 (1)

A. Bemporad, Rend. Acc. Lincei., Roma, Ser. 5 16, 66 (1907); Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D. C., 1951), 6th ed., p. 422.

Bass, A. M.

Bemporad, A.

A. Bemporad, Rend. Acc. Lincei., Roma, Ser. 5 16, 66 (1907); Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D. C., 1951), 6th ed., p. 422.

Benedict, W. S.

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

Calfee, R. F.

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

Cumming, C.

C. Cumming, D. J. G. McKinnon, W. R. Stephenson, Canadian Armament Research and Development Establishment, private communications (1963–1964).

Dale, E. B.

J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[CrossRef]

Dennison, D. M.

D. M. Dennison, Phys. Rev. 31, 503 (1928).
[CrossRef]

Gates, D. M.

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

Gutnick, M.

M. Gutnick, Air Force Surveys in Geophysics No. 147 (1962).

Hansen, D. W.

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

Houghton, J. T.

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 89, 332 (1963).
[CrossRef]

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

Hughes, N. D. P.

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

Kostkowski, H. J.

Mastenbrook, H. J.

H. J. Mastenbrook, in Humidity and Moisture (Reinhold, New York, 1964), Vol. 2.

McKinnon, D. J. G.

C. Cumming, D. J. G. McKinnon, W. R. Stephenson, Canadian Armament Research and Development Establishment, private communications (1963–1964).

Moss, T. S.

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

Nielsen, J. R.

J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[CrossRef]

Rautian, S. G.

S. G. Rautian, Soviet Phys.—Uspekhi 66, 475 (1958).

Seeley, J. S.

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

Stephenson, W. R.

C. Cumming, D. J. G. McKinnon, W. R. Stephenson, Canadian Armament Research and Development Establishment, private communications (1963–1964).

Thornton, V.

J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[CrossRef]

Williamson, E. J.

E. J. Williamson, Mem. Soc. Roy. Sci. Liege 9, 327 (1964).

Air Force Surveys in Geophysics No. 147 (1)

M. Gutnick, Air Force Surveys in Geophysics No. 147 (1962).

J. Chem. Phys. (1)

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

J. Opt. Soc. Am. (1)

Mem. Soc. Roy. Sci. Liege (1)

E. J. Williamson, Mem. Soc. Roy. Sci. Liege 9, 327 (1964).

NBS Monograph 71 (1)

D. M. Gates, R. F. Calfee, D. W. Hansen, W. S. Benedict, NBS Monograph 71 (1964).

Phil. Trans. Roy. Soc. (London) (1)

J. T. Houghton, N. D. P. Hughes, T. S. Moss, J. S. Seeley, Phil. Trans. Roy. Soc. (London), Ser. A 254, 47 (1961).
[CrossRef]

Phys. Rev. (1)

D. M. Dennison, Phys. Rev. 31, 503 (1928).
[CrossRef]

Quart. J. Roy. Meteorol. Soc. (1)

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 89, 332 (1963).
[CrossRef]

Rend. Acc. Lincei., Roma (1)

A. Bemporad, Rend. Acc. Lincei., Roma, Ser. 5 16, 66 (1907); Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D. C., 1951), 6th ed., p. 422.

Rev. Mod. Phys. (1)

J. R. Nielsen, V. Thornton, E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[CrossRef]

Soviet Phys.—Uspekhi (1)

S. G. Rautian, Soviet Phys.—Uspekhi 66, 475 (1958).

Other (2)

C. Cumming, D. J. G. McKinnon, W. R. Stephenson, Canadian Armament Research and Development Establishment, private communications (1963–1964).

H. J. Mastenbrook, in Humidity and Moisture (Reinhold, New York, 1964), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Computer-calculated spectrum for a multilayered atmosphere above 13.7 km at a zenith angle of 80.5°; w = 21.4 × 10−4 precipitable cm of water vapor along the path, or 3.66 × 10−4 precipitable cm of water vapor in a vertical direction.

Fig. 2
Fig. 2

Curves of growth showing the dependence of the absorptance on the water vapor in the atmospheric path above 13.7 km. The two curves show the differences between treating the stratosphere as a single layer and using a ten-layer model for computing purposes.

Fig. 3
Fig. 3

Vertical distribution of water vapor in the stratosphere following a constant mixing ratio model above 13.7 km. For a given mixing ratio above a particular altitude the total amount of water vapor in a vertical path is read directly along the abscissa.

Fig. 4
Fig. 4

A comparison of some possible water vapor distributions above 13.7 km. Only a distribution close to a constant mixing ratio model gives a calculated absorptance in agreement with the absorptance determined from observed spectra.

Tables (1)

Tables Icon

Table I Analysis of Water Vapor Distribution Above 13.7 km

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k i = S i π α i ( ν - ν i ) 2 + α i 2 ,
α ( p , T ) = α 0 p p 0 ( T 0 T ) n ,
S ( T ) = S 0 ( T 0 T ) ³ / exp - [ E k ( T 0 - T T 0 T ) ] .
k ( ν ) = i k i = i S i π α i ( ν - ν i ) 2 + α i 2 .
τ n ( ν ) = exp [ - k ( ν ) w n ] ,
p ¯ = p ( z ) ρ ( z ) d z ρ ( z ) d z .
p ¯ ( z l - z u ) = p l 2 exp ( M g R T z l ) exp { [ ( - M g z u R T ) + ( - M g z l R T ) ] } ,
τ t ( ν ) = Π τ n ( ν ) ;             n = 1 , j ,
τ ¯ ( μ 0 ) = ν 0 - a ν 0 + a s ( ν ) τ ( ν ) d ν ν 0 - a ν 0 + a s ( ν ) d ν .
s ( ν ) = a - ν - ν 0 .
w l = m r g × Δ P × ( slant path air mass ) .

Metrics