Abstract

The fast-developing domain of microwave optics is surveyed, with main emphasis on those aspects of interest to optical scientists. Special attention is devoted to the newer trends in that field of research. The following aspects are covered: diffraction theory of microwave optics, microwave optical instruments, beam waveguides, and components for millimeter waves.

© 1966 Optical Society of America

Full Article  |  PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (35)

Fig. 1
Fig. 1

Geometry of diffraction of a plane linearly polarized wave through a wide angle aplanatic optical system (reproduced from ref. 41).

Fig. 2
Fig. 2

(a) Measured contours of constant intensity, and (b) measured contours of constant phase of a lens with R = 63 cm, a = 25 cm, and λ = 3.22 cm. The intensity is shown in decibels with respect to the intensity at the geometrical image point, and the phase at the geometrical image is taken as π/2 radians (reproduced from ref. 196).

Fig. 3
Fig. 3

Diffracted amplitude (polar form) in the out-of-focus plane y = 3π for a microwave lens with f = 250 cm, 2a = 50 cm, λ = 1.25 cm (reproduced from ref. 390).

Fig. 4
Fig. 4

Diffracted amplitude (polar form) in the out-of-focus plane y = 4π for a microwave lens with π = 250 cm, 2a = 50 cm, λ = 1.25 cm (reproduced from ref. 390).

Fig. 5
Fig. 5

Parabolic reflector.

Fig. 6
Fig. 6

Dual reflector antenna with focal array feed (reproduced from ref. 261).

Fig. 7
Fig. 7

Cassegrainian (a) telescope and (b) microwave antenna.

Fig. 8
Fig. 8

Polarization twist for nonblocking sub dish (reproduced from ref. 214).

Fig. 9
Fig. 9

Microwave lenses: (a) n > 1 dielectric lens; (b) Path length lens, n; 1> (c) n< 1, parallel-plate lens; and (d) zoned lens.

Fig. 10
Fig. 10

Luneberg lens.

Fig. 11
Fig. 11

Fresnel zone plate (reproduced from ref. 554).

Fig. 12
Fig. 12

Millimeter Zoom antenna (reproduced from ref. 250).

Fig. 13
Fig. 13

Millimeter antenna with beam waveguide feed (reproduced from ref. 267).

Fig. 14
Fig. 14

Conventional microwave interferometer for diffraction pattern measurements.

Fig. 15
Fig. 15

Coherent background interferometer for diffraction pattern measurements.

Fig. 16
Fig. 16

Modified Michelson interferometer for wavefront analysis.

Fig. 17
Fig. 17

Microwave Mach-Zehnder interferometer.

Fig. 18
Fig. 18

Microwave Michelson interferometer for use at millimeter wavelengths (ν = 120 Gc/sec).

Fig. 19
Fig. 19

Microwave Fabry-Perot interferometer.

Fig. 20
Fig. 20

Folded Fabry-Perot interferometer. <S—source, O—observer, ML—multilayer reflector, RR—roof reflector (reproduced from ref. 415).

Fig. 21
Fig. 21

Arrangement of a microwave spectrometer.

Fig. 22
Fig. 22

Microwave spectrometer for use at frequency of 120 Gc/sec.

Fig. 23
Fig. 23

Transmission beam waveguide.

Fig. 24
Fig. 24

Millimeter transmission beam waveguide (120 Gc/sec).

Fig. 25
Fig. 25

Reflecting beam waveguide (reproduced from ref. 486).

Fig. 26
Fig. 26

Experimental reflecting beam waveguide (reproduced from ref. 486).

Fig. 27
Fig. 27

Rotating grid as bidirectional coupler.

Fig. 28
Fig. 28

Double prism arrangement of a bidirectional coupler.

Fig. 29
Fig. 29

Double prism bidirectional coupler for use at millimeter wavelength (ν = 120 Gc/sec).

Fig. 30
Fig. 30

Circular polarization duplexer utilizing a Fresnel rhomb (reproduced from ref. 542).

Fig. 31
Fig. 31

Trombone phase shifter.

Fig. 32
Fig. 32

Magic T phase shifter.

Fig. 33
Fig. 33

Double prism arrangement of a phase shifter.

Fig. 34
Fig. 34

A double prism phase shifter for use at millimeter wavelengths (120 Gc/sec).

Fig. 35
Fig. 35

Millimeter wave components proposed by A. W. Lines, (a) E-H matching unit, (b) wavemeter, and (c) standing wave-meter (refs. 14 and 15).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

( obstacle dimensions ) / λ { 1 1.
E ( P , t ) = R e { e ( P ) exp ( - i ω t ) } , H ( P , t ) = R e { h ( P ) exp ( - i w t ) }
e ( x , y , z ) = - + - + f ( s x , s y , z ) exp [ i ( 2 π / λ ) ( s x x + s y y ) ] d s x d s y .
2 e + ( 2 π λ ) 2 e = - + - + [ 4 π 2 λ 2 ( 1 - s x 2 - s y 2 ) f + 2 f z 2 ] exp [ i ( 2 π / λ ) ( s x x + s y y ) ] d s x d s y .
2 f z 2 = - 4 π 2 λ 2 ( 1 - s x 2 - s y 2 ) f ,
s z 2 = 1 - s x 2 - s y 2 ,
f ( s x , s y , z ) = U ( s x , s y ) exp [ i ( 2 π / λ ) s z z ) + V ( s x , s y ) exp [ - i ( 2 π / λ ) s z z ] .
e ( x , y , z ) = - + - + exp [ i ( 2 π / λ ) ( s x x + s y y ) ] { U { s x , s y ) exp [ i ( 2 π / λ ) s z z ] + V ( s x , s y ) exp [ - i ( 2 π / λ ) s z z ] } d s x d s y ,
( s x 2 + s y 2 ) 1.
e ( x , y , z ) = Ω exp [ i ( 2 π / λ ) s · r ] s z U ( s x , s y ) d s x d s y s z ,
d s x d s y s z = sin θ d θ d ϕ = d Ω .
e ( x , y , z ) = - i λ exp [ i ( 2 π / λ ) C ] Ω a ( s x , s y ) exp { i ( 2 π / λ ) [ Φ ( s x , s y ) + s · r ] d Ω , } ,
h ( x , y , z ) = - i λ K e Z 0 exp [ i ( 2 π / λ ) C ] Ω ( s × a ) exp { i ( 2 π / λ ) [ Φ ( s x , s y ) + s · r ] d Ω , } ,
a x = f l 0 cos θ [ cos θ + sin 2 ϕ ( 1 - cos θ ) ] , a y = f l 0 cos θ [ ( cos θ - 1 ) cos ϕ sin ϕ ] , a z = - f l 0 cos θ sin θ cos ϕ , }
( s × a ) x = f l 0 cos θ [ ( cos θ - 1 ) cos ϕ sin ϕ ] , ( s × a ) y = f l 0 cos θ [ 1 - sin 2 ϕ ( 1 - cos θ ) ] , ( s × a ) z = - f l 0 cos θ sin θ sin ϕ , }
e x ( P ) = - i A ( I 0 + I 2 cos 2 ϕ ) , e y ( P ) = - i A I 2 sin 2 ϕ , e z ( P ) = - 2 A I 1 cos ϕ , }
h x ( P ) = - i K e Z 0 A I 2 sin 2 ϕ , h y ( P ) = - i K c Z 0 A ( I 0 - I 2 cos 2 ϕ ) , h z ( P ) = - 2 K c Z 0 A I 1 sin ϕ , }
I 0 = I 0 ( k r , θ ; α ) = 0 α cos θ · sin θ ( 1 + cos θ ) · J 0 ( k r sin θ sin θ ) exp ( i k r cos θ cos θ ) d θ , I 1 = I 1 ( k r , θ ; α ) = 0 α cos θ · sin 2 θ J 1 ( k r sin θ sin θ ) exp ( i k r cos θ cos θ ) d θ , I 2 = I 2 ( k r , θ ; α ) = 0 θ cos θ · sin θ ( 1 - cos θ ) · J 2 ( k r sin θ sin θ ) exp ( i k r cos θ cos θ ) d θ .
G 0 = 4 π A λ 2 ,
n ( r ) = [ 2 - ( r a ) 2 ] 1 / 2 , r 1 , n ( r ) = 1 , r 1 , }
E ( w ) = 0 w U ( w ) U * ( w ) w d w 0 U ( w ) U * ( w ) w d w ,
U ( w ) = 2 0 1 T ( x ) exp [ i k ϕ ( x ) ] J 0 ( w x ) x d x .
ϕ ( x ) = 0 ,             0 x 1 ;
T ( x ) = U ( w m x ) , 0 x 1 , U ( w ) = T ( w / w m ) . 0 w w m . } ;
E ( w m ) = 1 - T 2 ( 1 ) ,
α 0 = 1 - E ( w m ) = T 2 ( 1 ) ;
T ( x ) = exp ( - w m x 2 / 2 ) .
Δ ϕ = 4 π Δ l / λ g ,

Metrics