Abstract

A grating spectrometer has been designed and built which allows extremely rapid scanning rates (over 200 Å/μsec) over a wide spectral range (4000–11,000 Å) in one order with a theoretical resolving power of ~6000. The basic principles of the instrument are described together with some spectra (taken at speeds of ~90 Å/μsec) illustrating its capabilities.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
    [CrossRef]
  2. W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
    [CrossRef]

1964 (2)

R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
[CrossRef]

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Beckner, E. H.

Botticher, W.

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Hill, R. A.

Lübbers, D. W.

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Niesel, W.

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Richter, J.

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Schneewolf, D.

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Appl. Opt. (1)

Rev. Sci. Instr. (1)

W. Niesel, D. W. Lübbers, D. Schneewolf, J. Richter, W. Botticher, Rev. Sci. Instr. 35, 578 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical arrangement of ultra-rapid scanning monochromator.

Fig. 2
Fig. 2

Arrangement of ultra-rapid scanning monochromator showing geometrical factors governing spectral range and speed.

Fig. 3
Fig. 3

Upper trace: spectrum from a tungsten standard lamp. Lower trace: spectrum from the mercury lamp. Both traces recorded simultaneously at sweep rates of 10 μsec/cm and a scanning speed of 93 Å/μsec.

Fig. 4
Fig. 4

Expanded trace of part of the spectrum from the mercury lamp at a sweep rate of ½ μsec/cm and a scanning speed of ~93 Å/μsec.

Fig. 5
Fig. 5

Spectrum from the xenon short-arc lamp at a scanning speed of 80 Å/μsec. Upper trace: sweep rate 10 μsec/cm. Lower trace: sweep rate 1 μsec/cm.

Fig. 6
Fig. 6

Spectra from the xenon lamp and the mercury lamp recorded simultaneously at a scanning speed of 93 Å/μsec. Sweep rate: (a) 10 μsec/cm; (b) 5 μsec/cm; (c) 1 μsec/cm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β = β 1 = β 2 .
m λ 1 = d ( sin α 1 + sin β ) ,
m λ 2 = d ( sin α 2 + sin β ) .
m Δ λ = m ( λ 2 - λ 1 ) = d ( sin α 2 - sin α 1 )
= 2 d cos ( α 2 + α 1 2 ) sin ( α 2 - α 1 2 ) .
2 ( θ 2 - θ 1 ) = 2 Δ θ = ( α 2 - α 1 ) = Δ α .
α 2 + α 1 2 = θ B .
Δ λ = 2 d cos θ B sin Δ θ ,

Metrics