Abstract

Cyclic or chainlike inelastic collision processes are invoked as an hypothesis to explain the grossly non-thermodynamic properties of energetic carbon and gas-fed carbon arcs confined by magnetic fields. Elastic collisions between the fast electrons (v > v+ but E ≪ E+) and the hot ions appear to be only about one-tenth as efficient a process for heating the ions as the proposed multiple inelastic collision process, which we call excitation-heating. In addition, a revised treatment of the rate of energy transfer from hot carbon ions to the very cold electrons (v < v+) reduces the conventional ion cooling rate by a factor of about 6.

© 1966 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. McNally, M. R. Skidmore, Appl. Opt. 2, 699 (1963). This paper gives a comprehensive review of earlier experiments. See also Optical Spectrometric Measurements of High Temperatures, P. J. Dickerman, ed. (Univ. of Chicago Press, 1961), pp. 70–94.
    [CrossRef]
  2. J. R. McNally, M. R. Skidmore, J. Opt. Soc. Am. 47, 863 (1957); see also H. W. Drawin, Z. Phys. 174, 489 (1964).
    [CrossRef]
  3. Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
    [CrossRef]
  4. J. R. McNally, M. R. Skidmore, ORNL-3652 (1964), pp. 74–77; ORNL-3564, pp. 67–71 (1963) available from authors.
  5. J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956).
  6. I. P. Flaks, E. S. Solovev, Zh. Tekhn. Fiz. 3, 577 (1958).
  7. The ionization of helium in the collision of two metastable helium atoms has an estimated σvof 5 × 10−8cm3/sec (A. R. Tynes, thesis, Oregon State Univ., Corvallis, Oregon, 1964), i.e., He* + He* → He2** → He2* + e(or He + He++ e). The cross section for triplet–triplet deactivation collisions has also been determined as 10−14cm2at 300°K [A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953)]. P. L. Pakhomov, I. Y. Fugol, Dokl. Akad. Nauk SSSR 159, 59 (1964), report a rate one-half as large at 77°K as that of Phelps and Molnar at 300°K.
  8. E. Hinnov, J. G. Hirschberg, Phys. Rev. 125, 795 (1962), give a T−−4,5dependence for three-body recombinations.
    [CrossRef]
  9. H. S. W. Massey, D. R. Bates, Rept. Progr. Phys. 9, 62 (1942); D. R. Bates, Atomic and Molecular Processes (Academic, New York, 1962).
    [CrossRef]
  10. An auxiliary reaction is C2+*(3P0) + C2+*(3P0) → C2+(1P0) + C2+(1S) + 0.3 eV, which may enhance or quench the pumping cycle depending on whether or not a radiationless transition (1P0→ 1S) occurs during the collision.
  11. T. K. Fowler, M. Rankin, J. Nucl. Energy C4, 311 (1962).
  12. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962).
  13. H. N. Olsen, Phys. Rev. 124, 1703 (1961); see also G. Ecker, W. Kroll, Phys. Fluids 6, 62 (1963).
    [CrossRef]
  14. See R. A. McFarland, Appl. Phys. Letters 5, 91 (1964).
    [CrossRef]
  15. The charge-exchange reaction C2++ Ar → C++ Ar++ 8.6 eV has a cross section with a broad maximum of 2 × 10−15cm2at about 1-keV C2+giving σv~ 2.5 × 10−8cm3/sec (see ref. 5).

1964

Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
[CrossRef]

J. R. McNally, M. R. Skidmore, ORNL-3652 (1964), pp. 74–77; ORNL-3564, pp. 67–71 (1963) available from authors.

See R. A. McFarland, Appl. Phys. Letters 5, 91 (1964).
[CrossRef]

1963

1962

T. K. Fowler, M. Rankin, J. Nucl. Energy C4, 311 (1962).

E. Hinnov, J. G. Hirschberg, Phys. Rev. 125, 795 (1962), give a T−−4,5dependence for three-body recombinations.
[CrossRef]

1961

H. N. Olsen, Phys. Rev. 124, 1703 (1961); see also G. Ecker, W. Kroll, Phys. Fluids 6, 62 (1963).
[CrossRef]

1958

I. P. Flaks, E. S. Solovev, Zh. Tekhn. Fiz. 3, 577 (1958).

1957

1956

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956).

1942

H. S. W. Massey, D. R. Bates, Rept. Progr. Phys. 9, 62 (1942); D. R. Bates, Atomic and Molecular Processes (Academic, New York, 1962).
[CrossRef]

Bates, D. R.

H. S. W. Massey, D. R. Bates, Rept. Progr. Phys. 9, 62 (1942); D. R. Bates, Atomic and Molecular Processes (Academic, New York, 1962).
[CrossRef]

Bridges, W. B.

Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
[CrossRef]

Flaks, I. P.

I. P. Flaks, E. S. Solovev, Zh. Tekhn. Fiz. 3, 577 (1958).

Fowler, T. K.

T. K. Fowler, M. Rankin, J. Nucl. Energy C4, 311 (1962).

Gordon, E. I.

Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
[CrossRef]

Hasted, J. B.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956).

Hinnov, E.

E. Hinnov, J. G. Hirschberg, Phys. Rev. 125, 795 (1962), give a T−−4,5dependence for three-body recombinations.
[CrossRef]

Hirschberg, J. G.

E. Hinnov, J. G. Hirschberg, Phys. Rev. 125, 795 (1962), give a T−−4,5dependence for three-body recombinations.
[CrossRef]

Labuda, E. F.

Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
[CrossRef]

Massey, H. S. W.

H. S. W. Massey, D. R. Bates, Rept. Progr. Phys. 9, 62 (1942); D. R. Bates, Atomic and Molecular Processes (Academic, New York, 1962).
[CrossRef]

McFarland, R. A.

See R. A. McFarland, Appl. Phys. Letters 5, 91 (1964).
[CrossRef]

McNally, J. R.

Olsen, H. N.

H. N. Olsen, Phys. Rev. 124, 1703 (1961); see also G. Ecker, W. Kroll, Phys. Fluids 6, 62 (1963).
[CrossRef]

Rankin, M.

T. K. Fowler, M. Rankin, J. Nucl. Energy C4, 311 (1962).

Skidmore, M. R.

Smith, R. A.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956).

Solovev, E. S.

I. P. Flaks, E. S. Solovev, Zh. Tekhn. Fiz. 3, 577 (1958).

Spitzer, L.

L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962).

Tynes, A. R.

The ionization of helium in the collision of two metastable helium atoms has an estimated σvof 5 × 10−8cm3/sec (A. R. Tynes, thesis, Oregon State Univ., Corvallis, Oregon, 1964), i.e., He* + He* → He2** → He2* + e(or He + He++ e). The cross section for triplet–triplet deactivation collisions has also been determined as 10−14cm2at 300°K [A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953)]. P. L. Pakhomov, I. Y. Fugol, Dokl. Akad. Nauk SSSR 159, 59 (1964), report a rate one-half as large at 77°K as that of Phelps and Molnar at 300°K.

Appl. Opt.

Appl. Phys. Letters

See R. A. McFarland, Appl. Phys. Letters 5, 91 (1964).
[CrossRef]

Strong laser action has been observed for λ 4880 Å of Ar+[E. I. Gordon, E. F. Labuda, W. B. Bridges, Appl. Phys. Letters 4, 178 (1964)]. One of us (JRM) has suggested the laser inversion mechanism may be due to2Ar++*(3p4 ¹D2)+1Ar+*(3p4 3d4D⁷/₂)→Ar++(3p4 ³P2)+Ar++(3p4 ³P0)+Ar+(3p4 4p ²D⁵/₂0)+0.005 eV; however, there appears to be compelling evidence that this is not a feasible interpretation (R. C. Miller, Bell Telephone Laboratories, private communication, April1965).
[CrossRef]

J. Nucl. Energy

T. K. Fowler, M. Rankin, J. Nucl. Energy C4, 311 (1962).

J. Opt. Soc. Am.

ORNL-3652

J. R. McNally, M. R. Skidmore, ORNL-3652 (1964), pp. 74–77; ORNL-3564, pp. 67–71 (1963) available from authors.

Phys. Rev.

E. Hinnov, J. G. Hirschberg, Phys. Rev. 125, 795 (1962), give a T−−4,5dependence for three-body recombinations.
[CrossRef]

H. N. Olsen, Phys. Rev. 124, 1703 (1961); see also G. Ecker, W. Kroll, Phys. Fluids 6, 62 (1963).
[CrossRef]

Proc. Roy. Soc. (London)

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956).

Rept. Progr. Phys.

H. S. W. Massey, D. R. Bates, Rept. Progr. Phys. 9, 62 (1942); D. R. Bates, Atomic and Molecular Processes (Academic, New York, 1962).
[CrossRef]

Zh. Tekhn. Fiz.

I. P. Flaks, E. S. Solovev, Zh. Tekhn. Fiz. 3, 577 (1958).

Other

The ionization of helium in the collision of two metastable helium atoms has an estimated σvof 5 × 10−8cm3/sec (A. R. Tynes, thesis, Oregon State Univ., Corvallis, Oregon, 1964), i.e., He* + He* → He2** → He2* + e(or He + He++ e). The cross section for triplet–triplet deactivation collisions has also been determined as 10−14cm2at 300°K [A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953)]. P. L. Pakhomov, I. Y. Fugol, Dokl. Akad. Nauk SSSR 159, 59 (1964), report a rate one-half as large at 77°K as that of Phelps and Molnar at 300°K.

An auxiliary reaction is C2+*(3P0) + C2+*(3P0) → C2+(1P0) + C2+(1S) + 0.3 eV, which may enhance or quench the pumping cycle depending on whether or not a radiationless transition (1P0→ 1S) occurs during the collision.

L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962).

The charge-exchange reaction C2++ Ar → C++ Ar++ 8.6 eV has a cross section with a broad maximum of 2 × 10−15cm2at about 1-keV C2+giving σv~ 2.5 × 10−8cm3/sec (see ref. 5).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics