Abstract

No abstract available.

Full Article  |  PDF Article

Errata

J. P. Kirk, "Errata: Hologram on Photochromic Glass," Appl. Opt. 5, 1882_1-1882 (1966)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-5-12-1882_1

References

  • View by:
  • |
  • |
  • |

  1. J. Bennett, M. J. Booty, Appl. Opt. 5, 41 (1966).
    [CrossRef] [PubMed]
  2. H. B. Phillip, E. A. Taft, Phys. Rev. 113, 1002 (1959); Phys. Rev. 120, 37 (1960).
    [CrossRef]
  3. A. Engelsrath, dissertation, Syracuse University (1964).
  4. H. O. McMahon, J. Opt. Soc. Am. 40, 376 (1950).
    [CrossRef]

1966

1959

H. B. Phillip, E. A. Taft, Phys. Rev. 113, 1002 (1959); Phys. Rev. 120, 37 (1960).
[CrossRef]

1950

Bennett, J.

Booty, M. J.

Engelsrath, A.

A. Engelsrath, dissertation, Syracuse University (1964).

McMahon, H. O.

Phillip, H. B.

H. B. Phillip, E. A. Taft, Phys. Rev. 113, 1002 (1959); Phys. Rev. 120, 37 (1960).
[CrossRef]

Taft, E. A.

H. B. Phillip, E. A. Taft, Phys. Rev. 113, 1002 (1959); Phys. Rev. 120, 37 (1960).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Phys. Rev.

H. B. Phillip, E. A. Taft, Phys. Rev. 113, 1002 (1959); Phys. Rev. 120, 37 (1960).
[CrossRef]

Other

A. Engelsrath, dissertation, Syracuse University (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

TABLE I Example of Convergence on Iteration

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R = I r / I 0 = r [ 1 + ( 1 - r ) 2 e - 2 μ d / ( 1 - r 2 e - 2 μ d ) ] ,
T = I t / I 0 = ( 1 - r ) 2 e - μ d / ( 1 - r 2 e - 2 μ d )
R = r ( 1 + T e - μ d ) .
r = [ ( N - 1 ) ( N * - 1 ) ] / [ ( N + 1 ) ( N * + 1 ) ]
T = 8 n 2 / { [ n 4 + 2 n 2 ( 2 + γ ) + γ 2 ] sin h μ d + ( 4 n 3 + 4 n γ ) cos h μ d } ,
δ = cos h μ d / sin h μ d , = ( T sin h μ d ) - 1 ,
n 4 + 4 n 3 δ + 2 n 2 ( 2 + γ - 4 ) + 4 n γ δ + γ 2 = 0.
R = [ ( n - 1 ) 2 + ( μ λ / 4 π ) 2 ( n + 1 ) 2 + ( μ λ / 4 π ) 2 ] ( 1 + T e - μ d ) ,
n = 1 + T e - μ d + R 1 + T e - μ d - R ± [ ( 1 + T e - μ d + R 1 + T e - μ d - R ) 2 - γ ] ½ .
n = [ ( 1 + R ) ± 2 ( R ) ½ ] / ( 1 - R ) .
sin h μ d = [ - ζ η / T ± ( ζ 2 η 2 + ζ 2 / T 2 - 1 ) ½ ] / ( ζ 2 η 2 - 1 )
η = - [ n 4 + 6 n 2 + 1 ] / 8 n 2 , ζ = 2 n / ( n 2 + 1 ) .

Metrics