Abstract

Several electrooptic digital light deflection techniques have been proposed. The maximum number of resolvable deflection positions for all methods is determined, essentially, by economic reasons, the tolerable amount of background light, and aberrations. In this paper, three different types of deflection methods (split angle, total internal reflection, Wollaston prism) are described. Design, construction details, and performance of three deflector models are reported. Combined deflection systems use the advantageous properties of each of these methods to economically obtain the maximum number of resolvable deflection positions. A suggested combination to achieve 1024×1024 positions arranged in a two-dimensional field would consist of one total internal reflection stage, seven stages of split angles, and two stages of Wollaston prisms for each dimension.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. J. Schmidt, Optical Processing of Information, D. K. Pollock, C. J. Koester, J. T. Tippett, Eds. Baltimore, Md.: Spartan, 1963, p. 98.
  2. W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
    [CrossRef]
  3. T. J. Nelson, Bell Sys. Tech. J., vol. 43, p. 821, 1964.
  4. W. J. Tabor, Bell Sys. Tech. J., vol. 43, p. 1153, 1964.
  5. W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.
  6. R. A. Soref, D. H. McMahon, Appl. Opt., vol. 5, p. 425, 1966.
    [CrossRef] [PubMed]
  7. M. A. Habegger, T. J. Harris, J. Lipp, “Total internal reflection (TIR) light deflector,” Appl. Opt., to be published.
  8. W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
    [CrossRef]
  9. B. H. Billings, J. Opt. Soc. Am., vol. 39, pp. 797–801 and pp. 802–808, 1949, and J. Opt. Soc. Am. vol. 42, pp. 12–30, 1952.
    [CrossRef]
  10. S. Flugge, Handbuch der Physik, vol. 24. Berlin: Springer Verlag, 1956, section 162, pp. 431–433.
  11. C. F. Haugh “Biased resonance circuits for electro-optic digital deflectors,” Appl. Opt., to be published.

1966 (2)

R. A. Soref, D. H. McMahon, Appl. Opt., vol. 5, p. 425, 1966.
[CrossRef] [PubMed]

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

1964 (3)

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

T. J. Nelson, Bell Sys. Tech. J., vol. 43, p. 821, 1964.

W. J. Tabor, Bell Sys. Tech. J., vol. 43, p. 1153, 1964.

1949 (1)

B. H. Billings, J. Opt. Soc. Am., vol. 39, pp. 797–801 and pp. 802–808, 1949, and J. Opt. Soc. Am. vol. 42, pp. 12–30, 1952.
[CrossRef]

Billings, B. H.

B. H. Billings, J. Opt. Soc. Am., vol. 39, pp. 797–801 and pp. 802–808, 1949, and J. Opt. Soc. Am. vol. 42, pp. 12–30, 1952.
[CrossRef]

Fleisher, H.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

Flugge, S.

S. Flugge, Handbuch der Physik, vol. 24. Berlin: Springer Verlag, 1956, section 162, pp. 431–433.

Habegger, M. A.

M. A. Habegger, T. J. Harris, J. Lipp, “Total internal reflection (TIR) light deflector,” Appl. Opt., to be published.

Harris, T. J.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

M. A. Habegger, T. J. Harris, J. Lipp, “Total internal reflection (TIR) light deflector,” Appl. Opt., to be published.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

Haugh, C. F.

C. F. Haugh “Biased resonance circuits for electro-optic digital deflectors,” Appl. Opt., to be published.

Kosanke, K.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

Kulcke, W.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

Lipp, J.

M. A. Habegger, T. J. Harris, J. Lipp, “Total internal reflection (TIR) light deflector,” Appl. Opt., to be published.

Max, E.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

McMahon, D. H.

Nelson, T. J.

T. J. Nelson, Bell Sys. Tech. J., vol. 43, p. 821, 1964.

Schmidt, U. J.

U. J. Schmidt, Optical Processing of Information, D. K. Pollock, C. J. Koester, J. T. Tippett, Eds. Baltimore, Md.: Spartan, 1963, p. 98.

Soref, R. A.

Tabor, W. J.

W. J. Tabor, Bell Sys. Tech. J., vol. 43, p. 1153, 1964.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Appl. Phys. Lett., vol. 8, p. 266, 1966.
[CrossRef]

Bell Sys. Tech. J. (2)

T. J. Nelson, Bell Sys. Tech. J., vol. 43, p. 821, 1964.

W. J. Tabor, Bell Sys. Tech. J., vol. 43, p. 1153, 1964.

IBM J. Research and Develop. (1)

W. Kulcke, T. J. Harris, K. Kosanke, E. Max, IBM J. Research and Develop., vol. 8, p. 64, 1964.
[CrossRef]

J. Opt. Soc. Am. (1)

B. H. Billings, J. Opt. Soc. Am., vol. 39, pp. 797–801 and pp. 802–808, 1949, and J. Opt. Soc. Am. vol. 42, pp. 12–30, 1952.
[CrossRef]

Other (5)

S. Flugge, Handbuch der Physik, vol. 24. Berlin: Springer Verlag, 1956, section 162, pp. 431–433.

C. F. Haugh “Biased resonance circuits for electro-optic digital deflectors,” Appl. Opt., to be published.

U. J. Schmidt, Optical Processing of Information, D. K. Pollock, C. J. Koester, J. T. Tippett, Eds. Baltimore, Md.: Spartan, 1963, p. 98.

W. Kulcke, K. Kosanke, E. Max, H. Fleisher, T. J. Harris, Optical and Electro-Optical Information Processing. Cambridge, Mass.: M.I.T. Press, 1965, ch. 23.

M. A. Habegger, T. J. Harris, J. Lipp, “Total internal reflection (TIR) light deflector,” Appl. Opt., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

A split angle deflection element.

Fig. 2
Fig. 2

Background light generated in calcite as a function of the convergence angle.

Fig. 3
Fig. 3

Wollaston prism deflection element.

Fig. 4
Fig. 4

A TIR deflection element. The two plates are immersed in an oil which has a refractive index approximately equal to the higher index of the birefringent plate.

Fig. 5
Fig. 5

Optical pathlength compensation in a TIR deflection stage with lenses of appropriate focal lengths and position.

Fig. 6
Fig. 6

Light transmission of different electrodes in air and in a liquid with an index n=1.5. (1a) KD*P crystal coated with two CdO electrodes in air, R=45 kΩ; (1b) in liquid. (2a) Corning Glass E-C Coating 1004 on quartz substrates in air, R=600 ohms; (2b) in liquid. (3a) KD*P crystal cemented with HE 79 epoxy to two E-C 1004 electrodes; (3b) in liquid. (4) Indium Oxide coating on glass substrate in air, R=9 kΩ. (5a) Indium Oxide coating on glass substrate in air, R=350 ohms; (5b) in liquid. (6) Same as 4 but antireflecting coating tuned for λ=6328 Å.

Fig. 7
Fig. 7

Light transmission, reflection and absorption of E-C 1004 electrodes.

Fig. 8
Fig. 8

Background light due to a light beam with a maximum convergence angle of 1.5° passing through a KD*P crystal immersed in a liquid with a refractive index of 1.5.

Fig. 9
Fig. 9

Background light generated in a KD*P switch due to deviations in the half-wave switching voltage.

Fig. 10
Fig. 10

Simplified circuit diagram of an electrooptic switch.

Fig. 11
Fig. 11

The maximum switching frequency of an electrooptic switch as a function of the dissipated power per electrode pair.

Fig. 12
Fig. 12

Cross section of a two-dimensional deflector system in which TIR, split angle, and Wollaston prism deflection stages are used.

Fig. 13
Fig. 13

Aperture d1 and length L1 of a TIR deflector subsystem as a function of the number of stages in the subsequent split angle deflector subsystem.Aperture d2y and length L2 of a split angle deflector based on the number of stages in the split angle subsystem and the number of TIR stages used.Aperture d3 and length L3 of a Wollaston prism subsystem based on a total of ten stages of deflection in the TIR, split angle, and Wollaston subsystems.

Fig. 14
Fig. 14

A 16-stage split angle deflection system.

Fig. 15
Fig. 15

A 2-stage Wollaston prism deflector.

Fig. 16
Fig. 16

A single-stage TIR deflector.

Fig. 17
Fig. 17

Deflection patterns generated with the combination of the 16-stage split angle deflector and the single-stage TIR deflector.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

b = l tan
m = - arc tan n o 2 - n e 2 2 n o n e
γ m = arc tan n e n o .
ϕ = α o + α e 2 ( n e - n o ) tan γ
ϕ 2 n e - n o n tan γ .
sin θ c = n e n m
b = 2 h sin θ .
Δ = n m b tan θ .
Δ = n 1 t 1 - n 2 t 2
t = Δ n 0 - n e
P = 1 2 ω 2 C x 2 V x 2 R e .
f max = 1 2 π C x V x 2 P R e .
b n = 2 n - 1 b 1
δ = 2 1.22 λ L d n ¯ = 1.22 λ β n ¯
b 1 δ .
d 1 = d ¯ 1 = ( 2 n 1 - 1 ) B 1 + d
B 1 = ( 2 n 2 - 1 ) b 1 + δ
d = 2 L 2 β
d ¯ 2 = ( 2 n 1 + n 2 - 1 ) b 1 + δ .
d 2 x × d 2 y = [ d ¯ 2 + 1 2 d A ] × [ 5 4 d ¯ 1 + 1 2 ( d B + d C ) ]
d A = 2 d B = 2 [ s + 2 n 2 - 1 2 b 1 tan ] 2 β d C = 2 n 2 - 2 2 b 1 tan 2 β
d 3 = d ¯ 2 + 2 β L 3
d ¯ 3 = ( 2 n - 1 ) b 1 + δ
L 1 = 2 n 1 [ s + B 1 2 ( 3 tan θ - cot θ ) ]
L 2 = 2 [ n 2 s + ( 2 n 2 - 1 ) 2 b 1 tan ] .
L 3 = 2 n 3 ( s + g ) .
L 3 = d ¯ 2 / ϕ 1
ϕ m = ( 2 n 3 - 1 ) ϕ 1 .
L 3 = [ ( 2 n 1 + n 2 - 1 ) b 1 + δ ] ( 2 n 3 - 1 ) ϕ m + 2 n 3 ( s + g )

Metrics