Abstract

The field of electrooptic light modulation by means of the Pockels and Kerr effects in crystals is summarized with particular attention to communications applications using the optical maser. All available data on electrooptic materials are tabulated, and design considerations and operating principles for various modulator configurations are outlined.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Pockels, Lehrbuch der Kristalloptik.Leipzig: Teubner, 1906.
  2. F. Jona, G. Shirane, Ferroelectric Crystals. New York: Macmillan, 1962.
  3. W. Kanzig, Solid State Physics, vol. 4, F. Seitz, D. Turnbull, Eds. New York: Academic, 1957, pp. 1–197.
    [CrossRef]
  4. B. H. Billings, “The electrooptic effect in uniaxial crystals of the dihydrogen phosphate (XH2PO4) type, Parts I, II, IV,” J. Opt. Soc. Am., vol. 39, pp. 797–801, and pp. 802–808, October1949, J. Opt. Soc. Am. vol. 42, pp. 12–20, January1952.
    [CrossRef]
  5. R. O’B Carpenter, “The electrooptic effect in crystals of the dihydrogen phosphate type, Part III,” Measurement of coefficients,” J. Opt. Soc. Am., vol. 40, pp. 225–229, April1950.R. O’B. Carpenter, “Electrooptic sound-on-film modulator,” J. Opt. Soc. Am., vol. 25, pp. 1145–1148, November1953.
    [CrossRef]
  6. D. F. Holshouser, H. Von Foerster, G. L. Clark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, December1961.
    [CrossRef]
  7. K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961.
    [CrossRef]
  8. J. F. Nye, Physical Properties of Crystals. Oxford, England: Oxford University Press, 1960.
  9. P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
    [CrossRef]
  10. Incorrect results, however, have been presented in quite recent publications such as G. N. Ramachandran, S. Ramaseshan, “Crystal Optics,” in Handbuch der Physik, vol. 25/1. Berlin: Springer-Verlag, 1961, pp. 1–217.
    [CrossRef]
  11. C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962.
    [CrossRef]
  12. C. F. Buhrer, L. R. Bloom, D. H. Baird, “Electrooptic light modulation with cubic crystals,” Appl. Opt., vol. 2, pp. 839–846, August1963.
    [CrossRef]
  13. W. P. Mason, “The elastic, piezoelectric, and dielectric constants of KDP and ADP,” Phys. Rev., vol. 69, pp. 173–194, March1946.
    [CrossRef]
  14. I. P. Kaminow, “Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4,” Phys. Rev., vol. 138, pp. A1539–A1543, May1965.
    [CrossRef]
  15. F. R. Nash, “Measurements made by substitution inside laser resonator,” unpublished.
  16. T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys., vol. 34, pp. 1837–1840, July1963.
    [CrossRef]
  17. W. J. Deshotels, “Ultraviolet transmission of dihydrogen arsenate and phosphate crystals,” J. Opt. Soc. Am., vol. 50, p. 865, September1960.
    [CrossRef]
  18. S. F. Pellicor, “Transmittances of some optical materials for use between 0.19 and 0.34 μ,” Appl. Opt., vol. 3, pp. 361–366, March1964.
  19. E. F. Kingsbury, unpublished memorandum, 1950.
  20. I. P. Kaminow, “Temperature dependence at the complex dielectric constant in KH2PO4-Type crystals and the design of microwave light modulators,” in Quantum Electronics III, P. Grivet, N. Bloembergen, Eds., New York: Columbia University Press, 1964, pp. 1659–1665.
  21. O. G. Blokh, “Dispersion of Γ63for crystals of ADP and KDP,” Sov. Phys.-Cryst., vol. 7, pp. 509–511, January-February 1963.
  22. J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964.
    [CrossRef]
  23. I. P. Kaminow, “Strain effects in electrooptic light modulators,” Appl. Opt., vol. 3, pp. 511–515, April1964.
    [CrossRef]
  24. J. H. Ott, T. R. Sliker, “Linear electrooptic effects in KH2PO4and its isomorphs,” J. Opt. Soc. Am., vol. 54, pp. 1442–1444, December1964.
    [CrossRef]
  25. C. H. Clayson, “Low-voltage light-amplitude modulation,” Electronic Letters, vol. 2, p. 138, April1966; reply by J. M. Ley, ibid., p. 139.
    [CrossRef]
  26. B. H. Billings, “The electrooptic effect in crystals and its possible application to distance measure,” in Optics in Metrology, P. Mollet, Ed. New York: Pergamon, 1960, pp. 119–135.
  27. F. Zernike, “Refractive indices of ADP and KDP between 0.2 and 1.5 μ,” J. Opt. Soc. Am., vol. 54, pp. 1215–1220, October1964; V. N. Vishnevskii, I. V. Stefanski, “Temperature dependence of the dispersion of the refractivity of ADP and KDP single crystals,” Opt. and Spectr., vol. 20, pp. 195–196, February1966.
  28. R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP and deuterated KDP,” J. Opt. Soc. Am., vol. 56, pp. 629–632, May1966.
    [CrossRef]
  29. D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.
  30. I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963.
    [CrossRef]
  31. J. M. Ley, “Low voltage light-amplitude modulation,” Electronics Letters, vol. 2, pp. 12–13, January1966.
    [CrossRef]
  32. I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.
  33. A. von Hippel, Dielectric Materials and Applications. New York: Wiley, 1954.
  34. R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961.
    [CrossRef]
  35. Helen D. Megaw, Ferroelectricity in Crystals. London: Methuen, 1957.
  36. J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
    [CrossRef]
  37. M. S. Schumate, “Interferometric determination of the principal refractive indices of barium titanate single crystals,” Appl. Phys. Letters, vol. 5, pp. 178–179, November1964.
    [CrossRef]
  38. J. A. Noland, “Optical absorption of single crystal strontium titanate,” Phys. Rev., vol. 94, p. 724, May1, 1954.R. C. Casella, S. P. Keller, “Polarized light transmission of BaTiO3single crystals,” Phys. Rev., vol. 116, pp. 1469–1473, December1959.C. Hilsum, “Infrared transmission of barium titanate,” J. Opt. Soc. Am., vol. 45, pp. 771–772, September1955.J. T. Last, “Infrared-absorption studies of barium titanate and related materials,” Phys. Rev., vol. 105, pp. 1740–1750, March1957.
    [CrossRef]
  39. C. J. Johnson, “Some dielectric and electrooptic properties of BaTiO3single crystals,” Appl. Phys. Letters, vol. 7, pp. 221–223, October1965.
    [CrossRef]
  40. G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962.
    [CrossRef]
  41. F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
    [CrossRef]
  42. A. R. Johnston, “The strain-free electrooptic effect in single-crystal barium titanate,” Appl. Phys. Letters, vol. 7, pp. 195–198, October1965.
    [CrossRef]
  43. S. K. Kurtz, “Design of an electrooptic polarization switch for a high capacity high-speed digital light deflection system,” Bell Sys. Tech. J., to be published.
  44. F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
    [CrossRef]
  45. A. Linz “Some electrical properties of strontium titanate,” Phys. Rev., vol. 91, pp. 753–754, August1953.
    [CrossRef]
  46. J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950.
    [CrossRef]
  47. J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
    [CrossRef]
  48. J. P. Remeika, “A method for growing barium titanate single crystals,” J. Am. Chem. Soc., vol. 76, pp. 940–941, February1954.
    [CrossRef]
  49. A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electrooptic effect in tetragonal BaTiO3,” J. Opt. Soc. Am., vol. 55, pp. 828–834, July1965.
    [CrossRef]
  50. E. H. Turner, Paper 6B-2, presented at the 1966 Intnat’l Quantum Electronics Conf., Phoenix, Ariz., and “High frequency electrooptic coefficients of lithium niobate,” Appl. Phys. Letters, vol. 8, pp. 303–304, June1966.
  51. I. P. Kaminow, “Barium titanate light phase modulator,” Appl. Phys. Letters, vol. 7, pp. 123–125, September1965, “Erratum,” vol. 8, p. 54, January1966. I. P. Kaminow, “Barium titanate light modulator II,” Appl. Phys. Letters, vol. 8, pp. 305–306, June1966.
    [CrossRef]
  52. The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.
  53. B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949.
    [CrossRef]
  54. A. A. Ballman, “The growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, pp. 112–113, February1965.
    [CrossRef]
  55. H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.
  56. R. T. Denton, Paper 6B-4, presented at the 1966 Internat’l Quantum Electronics Conf., Phoenix, Ariz.
  57. A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.
  58. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
    [CrossRef]
  59. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, May1965.
    [CrossRef]
  60. P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
    [CrossRef]
  61. F. A. Dunn, unpublished. Measurements at 9.3 GHz show that made from −180 degrees C to +100 degrees C ∊3decreases by 15 percent and ∊1=∊2by 7 percent from +100 to −180 degrees C. At room temperature ∊1=45 and ∊3=27. The dielectric loss was too low to be measured, i.e., tan δ<0.01.
  62. E. P. Ippen, “Electrooptic deflection with BaTiO3prisms,” Proc. IEEE, to be published.
  63. E. H. Turner, to be published. These are results of heterodyne measurements on vapor grown and hydrothermally grown crystals.
  64. R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959.
    [CrossRef]
  65. S. Namba, “Electrooptical effect of zincblende,” J. Opt. Soc. Am., vol. 51, pp. 76–79, January1961.
    [CrossRef]
  66. S. J. Czyzak, D. C. Reynolds et al., “On the properties of single cubic zinc sulfide crystals, J. Opt. Soc. Am., vol. 44, pp. 864–867, November1954.
    [CrossRef]
  67. D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
    [CrossRef]
  68. E. H. Turner, to be published. These are results of heterodyne measurements on crystals termed “primarily hexagonal.”
  69. T. M. Bieniewski, S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am., vol. 53, pp. 496–497, April1963.
    [CrossRef]
  70. R. W. McQuaid, “Electrooptic properties of zinc selenide,” Proc. IRE (Correspondence), vol. 50, pp. 2484–2485, December1962; and “Correction to ‘Electrooptic properties of zinc selenide,’” Proc. IEEE, vol. 51, p. 470, March1963.
  71. D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys., vol. 35, pp. 539–542, March1964.
    [CrossRef]
  72. M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
    [CrossRef]
  73. T. R. Sliker, J. M. Jost, “Linear electrooptic effect and refractive indices of cubic ZnTe,” J. Opt. Soc. Am., vol. 56, pp. 130–131, January1966.
    [CrossRef]
  74. E. H. Turner, unpublished. Heterodyne measurement.
  75. C. D. West, “Electrooptic and related properties of crystals with the zinc blend structure,” J. Opt. Soc. Am., vol. 43, p. 335, April1953.
  76. L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.
  77. Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.
  78. L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.
  79. I. P. Kaminow, unpublished. This value measured at 9.3 GHz. It was also found that tan δ=0.002.
  80. K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.
  81. L. Ho, C. F. Buhrer, “Electrooptic effect of gallium arsenide,” Appl. Opt., vol. 2, pp. 647–648, June1963.
    [CrossRef]
  82. E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.
  83. A. Yariv, C. A. Mead, “Semiconductors as electrooptic modulators for intrared radiation,” Paper 5C-3, presented at the 1966 Internat’l Quantum Electronics Conf.Phoenix, Ariz.; also, T. E. Walsh, “Gallium-arsenide electrooptic modulators,” RCA Rev., to be published.
  84. D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241–1242, April1964.
    [CrossRef]
  85. C. Hilsum, A. C. Rose-Innes, Semiconducting III–V Compounds. New York: Pergamon, 1961.
  86. K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
    [CrossRef]
  87. F. A. Dunn, unpublished. Measurement on semi-insulating material at 9.3 GHz, where tan δ<0.01 also was determined.
  88. D. J. A. Gainon, “Linear electrooptic effect in CdS,” J. Opt. Soc. Am., vol. 54, pp. 270–271, February1964.
    [CrossRef]
  89. S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.
  90. G. H. Heilmeier, “The dielectric and electrooptical properties of a molecular crystal-hexamine,” Appl. Opt., vol. 3, pp. 1281–1287, November1964.
    [CrossRef]
  91. C. F. Buhrer, L. Ho, J. Zucker, “Electrooptic effect in optically active crystals,” Appl. Opt., vol. 3, pp. 517–521, April1964.
    [CrossRef]
  92. T. R. Sliker, “Linear electrooptic effects in class 32, 6, 3m, and 4¯3m crystals,” J. Opt. Soc. Am., vol. 54, pp. 1348–1351, November1964.
    [CrossRef]
  93. R. Nitsche, “Crystal growth and electrooptic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys., vol. 36, pp. 2358–2360, August1965.
    [CrossRef]
  94. R. W. McQuaid, “The Pockels effect of hexamethylenetetramine,” Appl. Opt., vol. 2, pp. 320–321, March1963.
    [CrossRef]
  95. K. K. Thornber, E. H. Turner, “A determination of the electrooptic coefficients of hailynite, langbeinite and gallium phosphide,” unpublished.
  96. W. E. Ford, Dana’s Textbook of Mineralogy, fourth ed. New York: Wiley, 1932. This reference gives the value n=1.535 for the mineral compound K2Mg2(SO4)3and is assumed approximately correct for the other two. Also n≈ 1.572 for K2Mn2(SO4)3.
  97. R. W. McQuaid, “Cubic piezoelectric crystals for electro-optic modulation,” 1963 Proc. Nat’l Aerospace Electronics Conf., pp. 282–286.
  98. A. N. Winchell, H. Winchell, The Microscopical Characters of Artificial Inorganic Substances. New York: Academic, 1964.
  99. J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.
  100. W. G. Cady, Piezoelectricity. New York: McGraw-Hill, 1946, p. 721.
  101. D. D. Eden, G. H. Thiess, “Measurement of the direct electrooptic effect in quartz at UHF,” Appl. Opt., vol. 2, pp. 868–869, August1963.
    [CrossRef]
  102. O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.
  103. C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965.
    [CrossRef]
  104. C. F. Buhrer, L. Ho, “Electrooptic effect in and (NH4)2Cd2(SO4)3and (NH4)2Mn2(SO4)3,” Appl. Opt., vol. 3, p. 314, February1964.
    [CrossRef]
  105. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.
  106. R. H. Blumenthal, “Design of a microwave-frequency light modulator,” Proc. IEEE, vol. 50, pp. 452–456, April1962.
  107. W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963.
    [CrossRef]
  108. I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963.
    [CrossRef]
  109. C. J. Peters, “Gigacycle bandwidth coherent light traveling-wave phase modulator,” Proc. IEEE, vol. 51, pp. 147–153, January1963.
    [CrossRef]
  110. C. J. Peters, “Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator,” Proc. IEEE, vol. 53, pp. 455–460, May1965.
    [CrossRef]
  111. E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965.
    [CrossRef]
  112. W. J. Tabor, “A high capacity digital light deflector using Wollaston prisms,” Bell Sys. Tech. J., to be published. R. A. Soref, D. H. McMahon, “Optical design of Wollaston-prism digital light deflectors,” Appl. Opt., vol. 5, pp. 425–434, March1966.
    [CrossRef] [PubMed]
  113. I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
    [CrossRef]
  114. J. A. Ernest, I. P. Kaminow, 1963, unpublished.
  115. E. A. Ohm, private communication.
  116. I. P. Kaminow, “Microwave modulation of the electrooptic effect in KH2PO4,” Phys. Rev. Letters, vol. 6, pp. 528–530, May1961.I. P. Kaminow, “Splitting of Fabry-Perot rings by microwave modulation of light,” Appl. Phys. Letters, vol. 2, pp. 41–42, January1963.
    [CrossRef]
  117. E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.
  118. J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
    [CrossRef]
  119. S. M. Stone, “A microwave electro-optic modulator which overcomes transit time limitation,” Proc. IEEE (Correspondence), vol. 52, pp. 409–410, April1964.
    [CrossRef]
  120. R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965.
    [CrossRef]
  121. M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.
  122. A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963.
    [CrossRef]
  123. D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964.
    [CrossRef]
  124. W. L. Walters, “Electrooptic effect in reverse-biased GaAs p-njunctions,” J. Appl. Phys., vol. 37, p. 916, February1966.
    [CrossRef]
  125. F. K. Reinhart, private communication.
  126. I. P. Kaminow, unpublished. Measurements at 9.2 GHz indicate ∊=2.6 ± 0.2, with no observable trend between −200 and +100°C, and tan δ<0.005.
  127. R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

1966 (8)

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

C. H. Clayson, “Low-voltage light-amplitude modulation,” Electronic Letters, vol. 2, p. 138, April1966; reply by J. M. Ley, ibid., p. 139.
[CrossRef]

R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP and deuterated KDP,” J. Opt. Soc. Am., vol. 56, pp. 629–632, May1966.
[CrossRef]

J. M. Ley, “Low voltage light-amplitude modulation,” Electronics Letters, vol. 2, pp. 12–13, January1966.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
[CrossRef]

T. R. Sliker, J. M. Jost, “Linear electrooptic effect and refractive indices of cubic ZnTe,” J. Opt. Soc. Am., vol. 56, pp. 130–131, January1966.
[CrossRef]

W. L. Walters, “Electrooptic effect in reverse-biased GaAs p-njunctions,” J. Appl. Phys., vol. 37, p. 916, February1966.
[CrossRef]

1965 (17)

C. J. Peters, “Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator,” Proc. IEEE, vol. 53, pp. 455–460, May1965.
[CrossRef]

E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965.
[CrossRef]

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[CrossRef]

R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965.
[CrossRef]

L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

A. A. Ballman, “The growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, pp. 112–113, February1965.
[CrossRef]

R. Nitsche, “Crystal growth and electrooptic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys., vol. 36, pp. 2358–2360, August1965.
[CrossRef]

J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.

C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965.
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, May1965.
[CrossRef]

A. R. Johnston, “The strain-free electrooptic effect in single-crystal barium titanate,” Appl. Phys. Letters, vol. 7, pp. 195–198, October1965.
[CrossRef]

A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electrooptic effect in tetragonal BaTiO3,” J. Opt. Soc. Am., vol. 55, pp. 828–834, July1965.
[CrossRef]

I. P. Kaminow, “Barium titanate light phase modulator,” Appl. Phys. Letters, vol. 7, pp. 123–125, September1965, “Erratum,” vol. 8, p. 54, January1966. I. P. Kaminow, “Barium titanate light modulator II,” Appl. Phys. Letters, vol. 8, pp. 305–306, June1966.
[CrossRef]

I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.

C. J. Johnson, “Some dielectric and electrooptic properties of BaTiO3single crystals,” Appl. Phys. Letters, vol. 7, pp. 221–223, October1965.
[CrossRef]

I. P. Kaminow, “Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4,” Phys. Rev., vol. 138, pp. A1539–A1543, May1965.
[CrossRef]

1964 (18)

S. F. Pellicor, “Transmittances of some optical materials for use between 0.19 and 0.34 μ,” Appl. Opt., vol. 3, pp. 361–366, March1964.

F. Zernike, “Refractive indices of ADP and KDP between 0.2 and 1.5 μ,” J. Opt. Soc. Am., vol. 54, pp. 1215–1220, October1964; V. N. Vishnevskii, I. V. Stefanski, “Temperature dependence of the dispersion of the refractivity of ADP and KDP single crystals,” Opt. and Spectr., vol. 20, pp. 195–196, February1966.

J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964.
[CrossRef]

I. P. Kaminow, “Strain effects in electrooptic light modulators,” Appl. Opt., vol. 3, pp. 511–515, April1964.
[CrossRef]

J. H. Ott, T. R. Sliker, “Linear electrooptic effects in KH2PO4and its isomorphs,” J. Opt. Soc. Am., vol. 54, pp. 1442–1444, December1964.
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

M. S. Schumate, “Interferometric determination of the principal refractive indices of barium titanate single crystals,” Appl. Phys. Letters, vol. 5, pp. 178–179, November1964.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

C. F. Buhrer, L. Ho, “Electrooptic effect in and (NH4)2Cd2(SO4)3and (NH4)2Mn2(SO4)3,” Appl. Opt., vol. 3, p. 314, February1964.
[CrossRef]

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241–1242, April1964.
[CrossRef]

D. J. A. Gainon, “Linear electrooptic effect in CdS,” J. Opt. Soc. Am., vol. 54, pp. 270–271, February1964.
[CrossRef]

G. H. Heilmeier, “The dielectric and electrooptical properties of a molecular crystal-hexamine,” Appl. Opt., vol. 3, pp. 1281–1287, November1964.
[CrossRef]

C. F. Buhrer, L. Ho, J. Zucker, “Electrooptic effect in optically active crystals,” Appl. Opt., vol. 3, pp. 517–521, April1964.
[CrossRef]

T. R. Sliker, “Linear electrooptic effects in class 32, 6, 3m, and 4¯3m crystals,” J. Opt. Soc. Am., vol. 54, pp. 1348–1351, November1964.
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys., vol. 35, pp. 539–542, March1964.
[CrossRef]

S. M. Stone, “A microwave electro-optic modulator which overcomes transit time limitation,” Proc. IEEE (Correspondence), vol. 52, pp. 409–410, April1964.
[CrossRef]

D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964.
[CrossRef]

1963 (18)

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.

A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963.
[CrossRef]

L. Ho, C. F. Buhrer, “Electrooptic effect of gallium arsenide,” Appl. Opt., vol. 2, pp. 647–648, June1963.
[CrossRef]

E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.

D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
[CrossRef]

T. M. Bieniewski, S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am., vol. 53, pp. 496–497, April1963.
[CrossRef]

R. W. McQuaid, “The Pockels effect of hexamethylenetetramine,” Appl. Opt., vol. 2, pp. 320–321, March1963.
[CrossRef]

D. D. Eden, G. H. Thiess, “Measurement of the direct electrooptic effect in quartz at UHF,” Appl. Opt., vol. 2, pp. 868–869, August1963.
[CrossRef]

O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.

W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963.
[CrossRef]

I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963.
[CrossRef]

C. J. Peters, “Gigacycle bandwidth coherent light traveling-wave phase modulator,” Proc. IEEE, vol. 51, pp. 147–153, January1963.
[CrossRef]

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963.
[CrossRef]

O. G. Blokh, “Dispersion of Γ63for crystals of ADP and KDP,” Sov. Phys.-Cryst., vol. 7, pp. 509–511, January-February 1963.

T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys., vol. 34, pp. 1837–1840, July1963.
[CrossRef]

C. F. Buhrer, L. R. Bloom, D. H. Baird, “Electrooptic light modulation with cubic crystals,” Appl. Opt., vol. 2, pp. 839–846, August1963.
[CrossRef]

1962 (5)

C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962.
[CrossRef]

G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962.
[CrossRef]

R. H. Blumenthal, “Design of a microwave-frequency light modulator,” Proc. IEEE, vol. 50, pp. 452–456, April1962.

R. W. McQuaid, “Electrooptic properties of zinc selenide,” Proc. IRE (Correspondence), vol. 50, pp. 2484–2485, December1962; and “Correction to ‘Electrooptic properties of zinc selenide,’” Proc. IEEE, vol. 51, p. 470, March1963.

I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
[CrossRef]

1961 (8)

I. P. Kaminow, “Microwave modulation of the electrooptic effect in KH2PO4,” Phys. Rev. Letters, vol. 6, pp. 528–530, May1961.I. P. Kaminow, “Splitting of Fabry-Perot rings by microwave modulation of light,” Appl. Phys. Letters, vol. 2, pp. 41–42, January1963.
[CrossRef]

S. Namba, “Electrooptical effect of zincblende,” J. Opt. Soc. Am., vol. 51, pp. 76–79, January1961.
[CrossRef]

M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.

K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
[CrossRef]

R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961.
[CrossRef]

D. F. Holshouser, H. Von Foerster, G. L. Clark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, December1961.
[CrossRef]

K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961.
[CrossRef]

1960 (1)

1959 (1)

R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959.
[CrossRef]

1954 (3)

S. J. Czyzak, D. C. Reynolds et al., “On the properties of single cubic zinc sulfide crystals, J. Opt. Soc. Am., vol. 44, pp. 864–867, November1954.
[CrossRef]

J. A. Noland, “Optical absorption of single crystal strontium titanate,” Phys. Rev., vol. 94, p. 724, May1, 1954.R. C. Casella, S. P. Keller, “Polarized light transmission of BaTiO3single crystals,” Phys. Rev., vol. 116, pp. 1469–1473, December1959.C. Hilsum, “Infrared transmission of barium titanate,” J. Opt. Soc. Am., vol. 45, pp. 771–772, September1955.J. T. Last, “Infrared-absorption studies of barium titanate and related materials,” Phys. Rev., vol. 105, pp. 1740–1750, March1957.
[CrossRef]

J. P. Remeika, “A method for growing barium titanate single crystals,” J. Am. Chem. Soc., vol. 76, pp. 940–941, February1954.
[CrossRef]

1953 (2)

A. Linz “Some electrical properties of strontium titanate,” Phys. Rev., vol. 91, pp. 753–754, August1953.
[CrossRef]

C. D. West, “Electrooptic and related properties of crystals with the zinc blend structure,” J. Opt. Soc. Am., vol. 43, p. 335, April1953.

1950 (2)

1949 (2)

B. H. Billings, “The electrooptic effect in uniaxial crystals of the dihydrogen phosphate (XH2PO4) type, Parts I, II, IV,” J. Opt. Soc. Am., vol. 39, pp. 797–801, and pp. 802–808, October1949, J. Opt. Soc. Am. vol. 42, pp. 12–20, January1952.
[CrossRef]

B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949.
[CrossRef]

1946 (1)

W. P. Mason, “The elastic, piezoelectric, and dielectric constants of KDP and ADP,” Phys. Rev., vol. 69, pp. 173–194, March1946.
[CrossRef]

Anderson, L. K.

M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.

Ashkin, A.

A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963.
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Aven, M.

M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
[CrossRef]

Baird, D.

C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962.
[CrossRef]

Baird, D. H.

Baker, W. M.

S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.

Ballman, A. A.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

A. A. Ballman, “The growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, pp. 112–113, February1965.
[CrossRef]

C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965.
[CrossRef]

H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Belikova, G. S.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Bell, R. O.

G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962.
[CrossRef]

Belyaev, L. M.

L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Berlincourt, D.

D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
[CrossRef]

Berlincourt, D. A.

D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.

Bieniewski, T. M.

T. M. Bieniewski, S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am., vol. 53, pp. 496–497, April1963.
[CrossRef]

S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.

Billings, B. H.

B. H. Billings, “The electrooptic effect in uniaxial crystals of the dihydrogen phosphate (XH2PO4) type, Parts I, II, IV,” J. Opt. Soc. Am., vol. 39, pp. 797–801, and pp. 802–808, October1949, J. Opt. Soc. Am. vol. 42, pp. 12–20, January1952.
[CrossRef]

B. H. Billings, “The electrooptic effect in crystals and its possible application to distance measure,” in Optics in Metrology, P. Mollet, Ed. New York: Pergamon, 1960, pp. 119–135.

Blokh, O. G.

O. G. Blokh, “Dispersion of Γ63for crystals of ADP and KDP,” Sov. Phys.-Cryst., vol. 7, pp. 509–511, January-February 1963.

O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.

Bloom, L. R.

Blumenthal, R. H.

R. H. Blumenthal, “Design of a microwave-frequency light modulator,” Proc. IEEE, vol. 50, pp. 452–456, April1962.

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, May1965.
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

Boyd, G. D.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Bradsell, R. H.

K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961.
[CrossRef]

Buhrer, C. F.

Burlage, S. R.

T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys., vol. 34, pp. 1837–1840, July1963.
[CrossRef]

Cady, W. G.

W. G. Cady, Piezoelectricity. New York: McGraw-Hill, 1946, p. 721.

Capio, C. D.

H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.

Carpenter, R. O’B

Chen, F. S.

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

Clark, G. L.

Clayson, C. H.

C. H. Clayson, “Low-voltage light-amplitude modulation,” Electronic Letters, vol. 2, p. 138, April1966; reply by J. M. Ley, ibid., p. 139.
[CrossRef]

Cohen, M. G.

E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965.
[CrossRef]

Collins, R. J.

R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959.
[CrossRef]

Conwell, E. M.

C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962.
[CrossRef]

Curran, D. R.

D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.

Czyzak, S. J.

Denton, R. T.

R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

R. T. Denton, Paper 6B-4, presented at the 1966 Internat’l Quantum Electronics Conf., Phoenix, Ariz.

Deshotels, W. J.

DiDomenico, M.

M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.

Diedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Dobrzhanskii, G. F.

L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Dunn, F. A.

F. A. Dunn, unpublished. Measurement on semi-insulating material at 9.3 GHz, where tan δ<0.01 also was determined.

F. A. Dunn, unpublished. Measurements at 9.3 GHz show that made from −180 degrees C to +100 degrees C ∊3decreases by 15 percent and ∊1=∊2by 7 percent from +100 to −180 degrees C. At room temperature ∊1=45 and ∊3=27. The dielectric loss was too low to be measured, i.e., tan δ<0.01.

Eden, D. D.

Ernest, J. A.

J. A. Ernest, I. P. Kaminow, 1963, unpublished.

Ford, W. E.

W. E. Ford, Dana’s Textbook of Mineralogy, fourth ed. New York: Wiley, 1932. This reference gives the value n=1.535 for the mineral compound K2Mg2(SO4)3and is assumed approximately correct for the other two. Also n≈ 1.572 for K2Mn2(SO4)3.

Franken, P. A.

J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964.
[CrossRef]

Froome, K. D.

K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961.
[CrossRef]

Funktionen,

Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.

Gainon, D. J. A.

Gershenzon, M.

A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963.
[CrossRef]

Geusic, J. E.

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

Gordon, E. I.

E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965.
[CrossRef]

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

Gordon, J. P.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.

Guesic, J. E.

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

Hambleton, K. G.

K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
[CrossRef]

Harding, G. O.

I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963.
[CrossRef]

Heilmeier, G. H.

Hill, R. M.

R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961.
[CrossRef]

Hilsum, C.

K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
[CrossRef]

C. Hilsum, A. C. Rose-Innes, Semiconducting III–V Compounds. New York: Pergamon, 1961.

Ho, L.

Holeman, B. R.

K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
[CrossRef]

Holmes, C. H.

Holshouser, D. F.

Hulm, J. K.

J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950.
[CrossRef]

Ichiki, S. K.

R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961.
[CrossRef]

Ippen, E. P.

E. P. Ippen, “Electrooptic deflection with BaTiO3prisms,” Proc. IEEE, to be published.

Jaffe, H.

D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
[CrossRef]

D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.

Johnson, C. J.

C. J. Johnson, “Some dielectric and electrooptic properties of BaTiO3single crystals,” Appl. Phys. Letters, vol. 7, pp. 221–223, October1965.
[CrossRef]

Johnston, A. R.

A. R. Johnston, “The strain-free electrooptic effect in single-crystal barium titanate,” Appl. Phys. Letters, vol. 7, pp. 195–198, October1965.
[CrossRef]

A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electrooptic effect in tetragonal BaTiO3,” J. Opt. Soc. Am., vol. 55, pp. 828–834, July1965.
[CrossRef]

Jona, F.

F. Jona, G. Shirane, Ferroelectric Crystals. New York: Macmillan, 1962.

Jost, J. M.

Kaminow, I. P.

I. P. Kaminow, “Barium titanate light phase modulator,” Appl. Phys. Letters, vol. 7, pp. 123–125, September1965, “Erratum,” vol. 8, p. 54, January1966. I. P. Kaminow, “Barium titanate light modulator II,” Appl. Phys. Letters, vol. 8, pp. 305–306, June1966.
[CrossRef]

I. P. Kaminow, “Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4,” Phys. Rev., vol. 138, pp. A1539–A1543, May1965.
[CrossRef]

I. P. Kaminow, “Strain effects in electrooptic light modulators,” Appl. Opt., vol. 3, pp. 511–515, April1964.
[CrossRef]

I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963.
[CrossRef]

W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963.
[CrossRef]

I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963.
[CrossRef]

E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.

I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
[CrossRef]

I. P. Kaminow, “Microwave modulation of the electrooptic effect in KH2PO4,” Phys. Rev. Letters, vol. 6, pp. 528–530, May1961.I. P. Kaminow, “Splitting of Fabry-Perot rings by microwave modulation of light,” Appl. Phys. Letters, vol. 2, pp. 41–42, January1963.
[CrossRef]

J. A. Ernest, I. P. Kaminow, 1963, unpublished.

I. P. Kaminow, unpublished. Measurements at 9.2 GHz indicate ∊=2.6 ± 0.2, with no observable trend between −200 and +100°C, and tan δ<0.005.

I. P. Kaminow, unpublished. This value measured at 9.3 GHz. It was also found that tan δ=0.002.

I. P. Kaminow, “Temperature dependence at the complex dielectric constant in KH2PO4-Type crystals and the design of microwave light modulators,” in Quantum Electronics III, P. Grivet, N. Bloembergen, Eds., New York: Columbia University Press, 1964, pp. 1659–1665.

Kanzig, W.

W. Kanzig, Solid State Physics, vol. 4, F. Seitz, D. Turnbull, Eds. New York: Academic, 1957, pp. 1–197.
[CrossRef]

Kingsbury, E. F.

E. F. Kingsbury, unpublished memorandum, 1950.

Kinsel, T. S.

R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

Kleinman, D. A.

R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959.
[CrossRef]

Kompfner, R.

I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
[CrossRef]

Kurtz, S. K.

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

S. K. Kurtz, “Design of an electrooptic polarization switch for a high capacity high-speed digital light deflection system,” Bell Sys. Tech. J., to be published.

Kurtzig, A. J.

K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.

Landolt-Börnstein,

Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.

Lenzo, P. V.

P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965.
[CrossRef]

Levinstein, H. J.

H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.

The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Ley, J. M.

J. M. Ley, “Low voltage light-amplitude modulation,” Electronics Letters, vol. 2, pp. 12–13, January1966.
[CrossRef]

Linz, A.

A. Linz “Some electrical properties of strontium titanate,” Phys. Rev., vol. 91, pp. 753–754, August1953.
[CrossRef]

Liu, J.

I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963.
[CrossRef]

Loiacono, G. M.

The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.

Long, E. A.

J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950.
[CrossRef]

Louisell, W. H.

I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
[CrossRef]

Ludupov, T-Z

I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.

Manthuruthil, J. E.

S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.

Marple, D. T. F.

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241–1242, April1964.
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys., vol. 35, pp. 539–542, March1964.
[CrossRef]

M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
[CrossRef]

Mason, W. P.

W. P. Mason, “The elastic, piezoelectric, and dielectric constants of KDP and ADP,” Phys. Rev., vol. 69, pp. 173–194, March1946.
[CrossRef]

Matthias, B. T.

J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950.
[CrossRef]

B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949.
[CrossRef]

McQuaid, R. W.

R. W. McQuaid, “The Pockels effect of hexamethylenetetramine,” Appl. Opt., vol. 2, pp. 320–321, March1963.
[CrossRef]

R. W. McQuaid, “Electrooptic properties of zinc selenide,” Proc. IRE (Correspondence), vol. 50, pp. 2484–2485, December1962; and “Correction to ‘Electrooptic properties of zinc selenide,’” Proc. IEEE, vol. 51, p. 470, March1963.

R. W. McQuaid, “Cubic piezoelectric crystals for electro-optic modulation,” 1963 Proc. Nat’l Aerospace Electronics Conf., pp. 282–286.

Mead, C. A.

A. Yariv, C. A. Mead, “Semiconductors as electrooptic modulators for intrared radiation,” Paper 5C-3, presented at the 1966 Internat’l Quantum Electronics Conf.Phoenix, Ariz.; also, T. E. Walsh, “Gallium-arsenide electrooptic modulators,” RCA Rev., to be published.

Megaw, Helen D.

Helen D. Megaw, Ferroelectricity in Crystals. London: Methuen, 1957.

Miller, R. C.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

Myers, R. A.

R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965.
[CrossRef]

Namba, S.

Nash, F. R.

F. R. Nash, “Measurements made by substitution inside laser resonator,” unpublished.

Nassau, K.

P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Nelson, D. F.

D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964.
[CrossRef]

Nelson, T. J.

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

Netesov, G. B.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Nitsche, R.

R. Nitsche, “Crystal growth and electrooptic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys., vol. 36, pp. 2358–2360, August1965.
[CrossRef]

Noland, J. A.

J. A. Noland, “Optical absorption of single crystal strontium titanate,” Phys. Rev., vol. 94, p. 724, May1, 1954.R. C. Casella, S. P. Keller, “Polarized light transmission of BaTiO3single crystals,” Phys. Rev., vol. 116, pp. 1469–1473, December1959.C. Hilsum, “Infrared transmission of barium titanate,” J. Opt. Soc. Am., vol. 45, pp. 771–772, September1955.J. T. Last, “Infrared-absorption studies of barium titanate and related materials,” Phys. Rev., vol. 105, pp. 1740–1750, March1957.
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals. Oxford, England: Oxford University Press, 1960.

Ohm, E. A.

E. A. Ohm, private communication.

Ott, J. H.

Parfit, H. T.

J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.

Payne, H.

S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.

Pellicor, S. F.

Pershan, P. S.

R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965.
[CrossRef]

Peters, C. J.

C. J. Peters, “Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator,” Proc. IEEE, vol. 53, pp. 455–460, May1965.
[CrossRef]

C. J. Peters, “Gigacycle bandwidth coherent light traveling-wave phase modulator,” Proc. IEEE, vol. 51, pp. 147–153, January1963.
[CrossRef]

Phillips, R. A.

Pockels, F.

F. Pockels, Lehrbuch der Kristalloptik.Leipzig: Teubner, 1906.

Ramachandran, G. N.

Incorrect results, however, have been presented in quite recent publications such as G. N. Ramachandran, S. Ramaseshan, “Crystal Optics,” in Handbuch der Physik, vol. 25/1. Berlin: Springer-Verlag, 1961, pp. 1–217.
[CrossRef]

Ramaseshan, S.

Incorrect results, however, have been presented in quite recent publications such as G. N. Ramachandran, S. Ramaseshan, “Crystal Optics,” in Handbuch der Physik, vol. 25/1. Berlin: Springer-Verlag, 1961, pp. 1–217.
[CrossRef]

Reinhart, F. K.

D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964.
[CrossRef]

F. K. Reinhart, private communication.

Remeika, J. P.

J. P. Remeika, “A method for growing barium titanate single crystals,” J. Am. Chem. Soc., vol. 76, pp. 940–941, February1954.
[CrossRef]

B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949.
[CrossRef]

Reynolds, D. C.

Rigden, J. D.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

Rigrod, W. W.

W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963.
[CrossRef]

Robertson, D. S.

J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.

Rose-Innes, A. C.

C. Hilsum, A. C. Rose-Innes, Semiconducting III–V Compounds. New York: Pergamon, 1961.

Rupprecht, G.

G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962.
[CrossRef]

Ruscio, J. T.

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[CrossRef]

Savage, A.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

Schumate, M. S.

M. S. Schumate, “Interferometric determination of the principal refractive indices of barium titanate single crystals,” Appl. Phys. Letters, vol. 5, pp. 178–179, November1964.
[CrossRef]

Segall, B.

M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
[CrossRef]

Shaldin, Yu. U.

L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Shamburov, U. A.

O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.

Shiozawa, L. R.

D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
[CrossRef]

Shirane, G.

F. Jona, G. Shirane, Ferroelectric Crystals. New York: Macmillan, 1962.

Skinner, J. G.

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

Sliker, T. R.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

Spencer, E. G.

P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965.
[CrossRef]

Stone, S. M.

S. M. Stone, “A microwave electro-optic modulator which overcomes transit time limitation,” Proc. IEEE (Correspondence), vol. 52, pp. 409–410, April1964.
[CrossRef]

Tabor, W. J.

W. J. Tabor, “A high capacity digital light deflector using Wollaston prisms,” Bell Sys. Tech. J., to be published. R. A. Soref, D. H. McMahon, “Optical design of Wollaston-prism digital light deflectors,” Appl. Opt., vol. 5, pp. 425–434, March1966.
[CrossRef] [PubMed]

Thiess, G. H.

Thornber, K. K.

K. K. Thornber, E. H. Turner, “A determination of the electrooptic coefficients of hailynite, langbeinite and gallium phosphide,” unpublished.

K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.

Turner, E. H.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.

K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.

K. K. Thornber, E. H. Turner, “A determination of the electrooptic coefficients of hailynite, langbeinite and gallium phosphide,” unpublished.

E. H. Turner, to be published. These are results of heterodyne measurements on vapor grown and hydrothermally grown crystals.

E. H. Turner, to be published. These are results of heterodyne measurements on crystals termed “primarily hexagonal.”

E. H. Turner, unpublished. Heterodyne measurement.

E. H. Turner, Paper 6B-2, presented at the 1966 Intnat’l Quantum Electronics Conf., Phoenix, Ariz., and “High frequency electrooptic coefficients of lithium niobate,” Appl. Phys. Letters, vol. 8, pp. 303–304, June1966.

van Uitert, L. G.

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

Von Foerster, H.

von Hippel, A.

A. von Hippel, Dielectric Materials and Applications. New York: Wiley, 1954.

Walters, W. L.

W. L. Walters, “Electrooptic effect in reverse-biased GaAs p-njunctions,” J. Appl. Phys., vol. 37, p. 916, February1966.
[CrossRef]

Ward, J. F.

J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964.
[CrossRef]

Warner, J.

J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.

Weingart, J. M.

Wemple, S. H.

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

West, C. D.

C. D. West, “Electrooptic and related properties of crystals with the zinc blend structure,” J. Opt. Soc. Am., vol. 43, p. 335, April1953.

Winchell, A. N.

A. N. Winchell, H. Winchell, The Microscopical Characters of Artificial Inorganic Substances. New York: Academic, 1964.

Winchell, H.

A. N. Winchell, H. Winchell, The Microscopical Characters of Artificial Inorganic Substances. New York: Academic, 1964.

Yariv, A.

A. Yariv, C. A. Mead, “Semiconductors as electrooptic modulators for intrared radiation,” Paper 5C-3, presented at the 1966 Internat’l Quantum Electronics Conf.Phoenix, Ariz.; also, T. E. Walsh, “Gallium-arsenide electrooptic modulators,” RCA Rev., to be published.

Zahlenwerte,

Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.

Zernike, F.

Zheludev, I. S.

I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.

O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.

Zucker, J.

Appl. Opt. (10)

Appl. Phys. Letters (10)

D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964.
[CrossRef]

C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962.
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964.
[CrossRef]

M. S. Schumate, “Interferometric determination of the principal refractive indices of barium titanate single crystals,” Appl. Phys. Letters, vol. 5, pp. 178–179, November1964.
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966.
[CrossRef]

C. J. Johnson, “Some dielectric and electrooptic properties of BaTiO3single crystals,” Appl. Phys. Letters, vol. 7, pp. 221–223, October1965.
[CrossRef]

A. R. Johnston, “The strain-free electrooptic effect in single-crystal barium titanate,” Appl. Phys. Letters, vol. 7, pp. 195–198, October1965.
[CrossRef]

J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963.
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964.
[CrossRef]

I. P. Kaminow, “Barium titanate light phase modulator,” Appl. Phys. Letters, vol. 7, pp. 123–125, September1965, “Erratum,” vol. 8, p. 54, January1966. I. P. Kaminow, “Barium titanate light modulator II,” Appl. Phys. Letters, vol. 8, pp. 305–306, June1966.
[CrossRef]

Bell Sys. Tech. J. (3)

M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.

Electronic Letters (1)

C. H. Clayson, “Low-voltage light-amplitude modulation,” Electronic Letters, vol. 2, p. 138, April1966; reply by J. M. Ley, ibid., p. 139.
[CrossRef]

Electronics Letters (1)

J. M. Ley, “Low voltage light-amplitude modulation,” Electronics Letters, vol. 2, pp. 12–13, January1966.
[CrossRef]

IEEE J. of Quantum Electronics (1)

E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965.
[CrossRef]

IEEE J. of Quantum Electronics (Correspondence) (1)

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[CrossRef]

IRE Trans. on Microwave Theory and Techniques (1)

I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962.
[CrossRef]

J. Am. Ceram. Soc. (1)

A. A. Ballman, “The growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, pp. 112–113, February1965.
[CrossRef]

J. Am. Chem. Soc. (1)

J. P. Remeika, “A method for growing barium titanate single crystals,” J. Am. Chem. Soc., vol. 76, pp. 940–941, February1954.
[CrossRef]

J. Appl. Phys. (10)

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966.
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, May1965.
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys., vol. 35, pp. 539–542, March1964.
[CrossRef]

M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961.
[CrossRef]

T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys., vol. 34, pp. 1837–1840, July1963.
[CrossRef]

R. Nitsche, “Crystal growth and electrooptic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys., vol. 36, pp. 2358–2360, August1965.
[CrossRef]

A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963.
[CrossRef]

R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965.
[CrossRef]

W. L. Walters, “Electrooptic effect in reverse-biased GaAs p-njunctions,” J. Appl. Phys., vol. 37, p. 916, February1966.
[CrossRef]

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241–1242, April1964.
[CrossRef]

J. Opt. Soc. Am. (17)

T. R. Sliker, “Linear electrooptic effects in class 32, 6, 3m, and 4¯3m crystals,” J. Opt. Soc. Am., vol. 54, pp. 1348–1351, November1964.
[CrossRef]

D. J. A. Gainon, “Linear electrooptic effect in CdS,” J. Opt. Soc. Am., vol. 54, pp. 270–271, February1964.
[CrossRef]

E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.

T. M. Bieniewski, S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am., vol. 53, pp. 496–497, April1963.
[CrossRef]

C. D. West, “Electrooptic and related properties of crystals with the zinc blend structure,” J. Opt. Soc. Am., vol. 43, p. 335, April1953.

W. J. Deshotels, “Ultraviolet transmission of dihydrogen arsenate and phosphate crystals,” J. Opt. Soc. Am., vol. 50, p. 865, September1960.
[CrossRef]

B. H. Billings, “The electrooptic effect in uniaxial crystals of the dihydrogen phosphate (XH2PO4) type, Parts I, II, IV,” J. Opt. Soc. Am., vol. 39, pp. 797–801, and pp. 802–808, October1949, J. Opt. Soc. Am. vol. 42, pp. 12–20, January1952.
[CrossRef]

R. O’B Carpenter, “The electrooptic effect in crystals of the dihydrogen phosphate type, Part III,” Measurement of coefficients,” J. Opt. Soc. Am., vol. 40, pp. 225–229, April1950.R. O’B. Carpenter, “Electrooptic sound-on-film modulator,” J. Opt. Soc. Am., vol. 25, pp. 1145–1148, November1953.
[CrossRef]

D. F. Holshouser, H. Von Foerster, G. L. Clark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, December1961.
[CrossRef]

F. Zernike, “Refractive indices of ADP and KDP between 0.2 and 1.5 μ,” J. Opt. Soc. Am., vol. 54, pp. 1215–1220, October1964; V. N. Vishnevskii, I. V. Stefanski, “Temperature dependence of the dispersion of the refractivity of ADP and KDP single crystals,” Opt. and Spectr., vol. 20, pp. 195–196, February1966.

R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP and deuterated KDP,” J. Opt. Soc. Am., vol. 56, pp. 629–632, May1966.
[CrossRef]

J. H. Ott, T. R. Sliker, “Linear electrooptic effects in KH2PO4and its isomorphs,” J. Opt. Soc. Am., vol. 54, pp. 1442–1444, December1964.
[CrossRef]

T. R. Sliker, J. M. Jost, “Linear electrooptic effect and refractive indices of cubic ZnTe,” J. Opt. Soc. Am., vol. 56, pp. 130–131, January1966.
[CrossRef]

S. Namba, “Electrooptical effect of zincblende,” J. Opt. Soc. Am., vol. 51, pp. 76–79, January1961.
[CrossRef]

S. J. Czyzak, D. C. Reynolds et al., “On the properties of single cubic zinc sulfide crystals, J. Opt. Soc. Am., vol. 44, pp. 864–867, November1954.
[CrossRef]

P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966.
[CrossRef]

A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electrooptic effect in tetragonal BaTiO3,” J. Opt. Soc. Am., vol. 55, pp. 828–834, July1965.
[CrossRef]

J. Phys. Chem. Solids (1)

R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959.
[CrossRef]

J. Sci. Instr. (1)

K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961.
[CrossRef]

Kristallografiia (1)

I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.

Phvs. Letters (1)

J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.

Phys. Rev. (11)

J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964.
[CrossRef]

I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963.
[CrossRef]

J. A. Noland, “Optical absorption of single crystal strontium titanate,” Phys. Rev., vol. 94, p. 724, May1, 1954.R. C. Casella, S. P. Keller, “Polarized light transmission of BaTiO3single crystals,” Phys. Rev., vol. 116, pp. 1469–1473, December1959.C. Hilsum, “Infrared transmission of barium titanate,” J. Opt. Soc. Am., vol. 45, pp. 771–772, September1955.J. T. Last, “Infrared-absorption studies of barium titanate and related materials,” Phys. Rev., vol. 105, pp. 1740–1750, March1957.
[CrossRef]

R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961.
[CrossRef]

W. P. Mason, “The elastic, piezoelectric, and dielectric constants of KDP and ADP,” Phys. Rev., vol. 69, pp. 173–194, March1946.
[CrossRef]

I. P. Kaminow, “Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4,” Phys. Rev., vol. 138, pp. A1539–A1543, May1965.
[CrossRef]

B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949.
[CrossRef]

D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963.
[CrossRef]

A. Linz “Some electrical properties of strontium titanate,” Phys. Rev., vol. 91, pp. 753–754, August1953.
[CrossRef]

J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950.
[CrossRef]

G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962.
[CrossRef]

Phys. Rev. Letters (1)

I. P. Kaminow, “Microwave modulation of the electrooptic effect in KH2PO4,” Phys. Rev. Letters, vol. 6, pp. 528–530, May1961.I. P. Kaminow, “Splitting of Fabry-Perot rings by microwave modulation of light,” Appl. Phys. Letters, vol. 2, pp. 41–42, January1963.
[CrossRef]

Proc. IEEE (5)

R. H. Blumenthal, “Design of a microwave-frequency light modulator,” Proc. IEEE, vol. 50, pp. 452–456, April1962.

W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963.
[CrossRef]

I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963.
[CrossRef]

C. J. Peters, “Gigacycle bandwidth coherent light traveling-wave phase modulator,” Proc. IEEE, vol. 51, pp. 147–153, January1963.
[CrossRef]

C. J. Peters, “Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator,” Proc. IEEE, vol. 53, pp. 455–460, May1965.
[CrossRef]

Proc. IEEE (Correspondence) (1)

S. M. Stone, “A microwave electro-optic modulator which overcomes transit time limitation,” Proc. IEEE (Correspondence), vol. 52, pp. 409–410, April1964.
[CrossRef]

Proc. IEEE(Correspondence) (1)

F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964.
[CrossRef]

Proc. IRE (Correspondence) (1)

R. W. McQuaid, “Electrooptic properties of zinc selenide,” Proc. IRE (Correspondence), vol. 50, pp. 2484–2485, December1962; and “Correction to ‘Electrooptic properties of zinc selenide,’” Proc. IEEE, vol. 51, p. 470, March1963.

Proc. of the Physical Soc. (1)

K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961.
[CrossRef]

Sov. Phys.-Cryst. (1)

O. G. Blokh, “Dispersion of Γ63for crystals of ADP and KDP,” Sov. Phys.-Cryst., vol. 7, pp. 509–511, January-February 1963.

Soviet Phys.-Solid State (2)

L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.

L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.

Soviet Phys.—Cryst. (1)

O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.

Other (41)

W. G. Cady, Piezoelectricity. New York: McGraw-Hill, 1946, p. 721.

K. K. Thornber, E. H. Turner, “A determination of the electrooptic coefficients of hailynite, langbeinite and gallium phosphide,” unpublished.

W. E. Ford, Dana’s Textbook of Mineralogy, fourth ed. New York: Wiley, 1932. This reference gives the value n=1.535 for the mineral compound K2Mg2(SO4)3and is assumed approximately correct for the other two. Also n≈ 1.572 for K2Mn2(SO4)3.

R. W. McQuaid, “Cubic piezoelectric crystals for electro-optic modulation,” 1963 Proc. Nat’l Aerospace Electronics Conf., pp. 282–286.

A. N. Winchell, H. Winchell, The Microscopical Characters of Artificial Inorganic Substances. New York: Academic, 1964.

I. P. Kaminow, unpublished. This value measured at 9.3 GHz. It was also found that tan δ=0.002.

K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.

A. Yariv, C. A. Mead, “Semiconductors as electrooptic modulators for intrared radiation,” Paper 5C-3, presented at the 1966 Internat’l Quantum Electronics Conf.Phoenix, Ariz.; also, T. E. Walsh, “Gallium-arsenide electrooptic modulators,” RCA Rev., to be published.

Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.

F. A. Dunn, unpublished. Measurement on semi-insulating material at 9.3 GHz, where tan δ<0.01 also was determined.

C. Hilsum, A. C. Rose-Innes, Semiconducting III–V Compounds. New York: Pergamon, 1961.

S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.

J. A. Ernest, I. P. Kaminow, 1963, unpublished.

E. A. Ohm, private communication.

W. J. Tabor, “A high capacity digital light deflector using Wollaston prisms,” Bell Sys. Tech. J., to be published. R. A. Soref, D. H. McMahon, “Optical design of Wollaston-prism digital light deflectors,” Appl. Opt., vol. 5, pp. 425–434, March1966.
[CrossRef] [PubMed]

F. K. Reinhart, private communication.

I. P. Kaminow, unpublished. Measurements at 9.2 GHz indicate ∊=2.6 ± 0.2, with no observable trend between −200 and +100°C, and tan δ<0.005.

R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.

B. H. Billings, “The electrooptic effect in crystals and its possible application to distance measure,” in Optics in Metrology, P. Mollet, Ed. New York: Pergamon, 1960, pp. 119–135.

Helen D. Megaw, Ferroelectricity in Crystals. London: Methuen, 1957.

A. von Hippel, Dielectric Materials and Applications. New York: Wiley, 1954.

F. R. Nash, “Measurements made by substitution inside laser resonator,” unpublished.

E. F. Kingsbury, unpublished memorandum, 1950.

I. P. Kaminow, “Temperature dependence at the complex dielectric constant in KH2PO4-Type crystals and the design of microwave light modulators,” in Quantum Electronics III, P. Grivet, N. Bloembergen, Eds., New York: Columbia University Press, 1964, pp. 1659–1665.

J. F. Nye, Physical Properties of Crystals. Oxford, England: Oxford University Press, 1960.

Incorrect results, however, have been presented in quite recent publications such as G. N. Ramachandran, S. Ramaseshan, “Crystal Optics,” in Handbuch der Physik, vol. 25/1. Berlin: Springer-Verlag, 1961, pp. 1–217.
[CrossRef]

F. Pockels, Lehrbuch der Kristalloptik.Leipzig: Teubner, 1906.

F. Jona, G. Shirane, Ferroelectric Crystals. New York: Macmillan, 1962.

W. Kanzig, Solid State Physics, vol. 4, F. Seitz, D. Turnbull, Eds. New York: Academic, 1957, pp. 1–197.
[CrossRef]

S. K. Kurtz, “Design of an electrooptic polarization switch for a high capacity high-speed digital light deflection system,” Bell Sys. Tech. J., to be published.

E. H. Turner, Paper 6B-2, presented at the 1966 Intnat’l Quantum Electronics Conf., Phoenix, Ariz., and “High frequency electrooptic coefficients of lithium niobate,” Appl. Phys. Letters, vol. 8, pp. 303–304, June1966.

H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.

R. T. Denton, Paper 6B-4, presented at the 1966 Internat’l Quantum Electronics Conf., Phoenix, Ariz.

A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.

E. H. Turner, to be published. These are results of heterodyne measurements on crystals termed “primarily hexagonal.”

E. H. Turner, unpublished. Heterodyne measurement.

The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.

F. A. Dunn, unpublished. Measurements at 9.3 GHz show that made from −180 degrees C to +100 degrees C ∊3decreases by 15 percent and ∊1=∊2by 7 percent from +100 to −180 degrees C. At room temperature ∊1=45 and ∊3=27. The dielectric loss was too low to be measured, i.e., tan δ<0.01.

E. P. Ippen, “Electrooptic deflection with BaTiO3prisms,” Proc. IEEE, to be published.

E. H. Turner, to be published. These are results of heterodyne measurements on vapor grown and hydrothermally grown crystals.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) x3=0 cross section of the indicatrix with x1 directed field (dashed) and no field (solid). The effects of r11E1 and r21E1 have been omitted. The change in 1/x12, where x1′ is the radius vector, is a maximum when x1′ is at 45° to x1. The change in x1′ (and hence in index of refraction) is a maximum at angles near 45° unless the natural birefringence is very large as in the sketch. (b) x2′=0 cross section of the indicatrix with x1 directed field (dashed) and no field (solid). The change in x1′ axis is due to r61E1. The effect of r31E1 on the x3-axis has been neglected. (c) Crystal cut for measurement or use of r61 coefficient. Propagation direction and polarization of the light are indicated.

Fig. 2
Fig. 2

Change in orientation of indicatrix axes of a cubic crystal when applied field E lies in (001) plane. x1, x2, x3 are the cubic crystal axes. The unchanged semi-axis of the indicatrix lies along y—also in (001) plane. The other semi-axes are along x and z. Maximum birefringence is obtained when light propagates along y.

Fig. 3
Fig. 3

A beam of Gaussian cross section passing through a rod of diameter d and length L.

Fig. 4
Fig. 4

Equivalent driving circuit for a lumped modulator.

Fig. 5
Fig. 5

Partially filled parallel plate transmission line.

Tables (5)

Tables Icon

TABLE I KDP-ADP Type: Point Group ( 4 ¯ 2m) Above T c

Tables Icon

TABLE II Cubic Perovskites: m3m

Tables Icon

TABLE III Ferroelectric Perovskites

Tables Icon

TABLE IV AB-Type Semiconductors

Tables Icon

TABLE V Miscellaneous Crystals

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

1 n 2 = 1 n 0 2 + r E + R E 2 + ,
x 1 2 n 1 2 + x 2 2 n 2 2 + x 3 2 n 3 2 = 1 ,
i , j , k , l ( 1 n i j 2 + z i j k E k + R i j k l E k E l ) x i x j = 1
( 1 n 1 2 + r 11 E 1 ) x 1 2 + ( 1 n 2 2 + r 21 E 1 ) x 2 2 + 2 r 61 E 1 x 1 x 2 = 1.
1 ( n 1 + Δ n 1 ) 2 = ( 1 n 1 2 + r 11 E 1 ) .
Δ n 1 = - n 1 3 r 11 E 1 2 .
Δ n 2 = - n 2 3 r 21 E 1 2 .
A 2 exp i ( ω t - 2 π n 2 x 3 λ 0 ) ,
- 2 π L λ 0 [ n 2 - ( n 2 + Δ n 2 ) ] = - π n 2 3 r 21 E 1 L λ 0 η .
A 2 exp i ( ω t - 2 π n 1 L λ 0 )
A 2 exp i ( ω t - 2 π n 2 L λ 0 ) .
and A cos π L λ 0 ( n 1 - n 2 + Δ n 1 - Δ n 2 ) = A cos ( Γ / 2 ) A sin π L λ 0 ( n 1 - n 2 + Δ n 1 - Δ n 2 ) = A sin ( Γ / 2 )
± cos [ π L 2 λ 0 ( n 2 3 r 21 - n 1 3 r 11 ) E 1 ] 1 - 1 2 [ π L 2 λ 0 ( n 2 3 r 21 - n 1 3 r 11 ) E 1 ] 2 ,
± 1 2 ( 1 ± sin π L 2 λ 0 ( n 2 3 r 21 - n 1 3 r 11 ) E 1 ) ± 1 2 ( 1 ± π L 2 λ 0 ( n 2 3 r 21 - n 1 3 r 11 ) E 1 )
tan 2 α = 2 r 61 E 1 1 n 1 2 - 1 n 2 2 + ( r 11 - r 21 ) E 1 .
{ 1 2 ( 1 n 1 2 + 1 n 2 2 ) + r 61 E 1 + ( r 11 + r 21 ) 2 E 1 } x 1 2 + { 1 n 3 2 + r 31 E 1 } x 3 2 + 2 r 51 E 1 x 1 x 3 + 2 r 41 E 1 x 1 x 3 = 1
r 12 = r 61 = - r 22 r 21 = r 62 = - r 11 .
[ 1 n 1 2 + ( r 11 E 1 - r 22 E 2 ) ] x 1 2 + [ 1 n 1 2 + ( r 22 E 2 - r 11 E 1 ) ] x 2 2 + 2 [ - r 22 E 1 - r 11 E 2 ] x 1 x 2 = 1.
[ 1 n 1 2 + ( r 11 2 + r 22 2 ) 1 / 2 E ] x 1 2 + [ 1 n 1 2 - ( r 11 2 + r 22 2 ) 1 / 2 E ] x 2 2 = 1 ,
θ = - 1 2 [ Φ + arc sin r 22 r 11 2 + r 22 2 ] .
T c ( 123 + 106 x ) ° K .
n x 1 n 1 - 1 2 n 1 3 r 63 E 3 ,             n x 2 n 1 + 1 2 n 1 3 r 63 E 3 .
η = π n 1 3 r 63 E 3 L / λ .
Γ = 2 η .
V 1 / 2 = λ / 2 n 1 3 r 63 .
x 1 2 n 1 2 + [ 1 2 ( 1 n 1 2 + 1 n 3 2 ) + r 41 E 1 ] x 3 2 = 1
η = 2 π 2 ( 1 n 1 2 + 1 n 3 2 ) - 3 / 2 r 41 E 1 L / λ π n 1 3 r 41 E 1 L / λ .
Δ ( 1 n m 2 ) = g m n P j P k
Δ ( 1 / n 1 2 ) = Δ ( 1 / n 2 2 ) = g 12 P dc ( P dc + 2 0 E 3 ) Δ ( 1 / n 3 2 ) = g 11 P dc ( P dc + 2 0 E 3 ) Δ ( 1 / n 4 2 ) = g 44 P dc 0 E 2 ,             Δ ( 1 / n 5 2 ) = g 44 P dc 0 E 1 Δ ( 1 / n 6 2 ) = 0 ,
r c = r 33 - ( n 1 n 3 ) 3 r 13 ,
w 0 2 = λ L / 2 π n ,
d = S · 8 w 0 ,
d 2 / L = S 2 · 4 λ / n π
L 2 π c / 2 ω m             and             L 2 π c / 2 ω m n
C = 0 L
G = ω m C tan δ .
Δ ω = 2 ( G + G a ) ( C + C a ) .
P = V 2 2 ( G + G a ) = 1 2 ( λ η d π n 3 r L ) 2 ( G + G a )
P = V 2 4 ( C + C a ) Δ ω = 1 4 ( λ η d π n 3 r L ) 2 ( C + C a ) Δ ω ,
P = ( 0 4 π 2 ) ( λ 2 ) ( n 6 r 2 ) ( d 2 L ) · η 2 Δ ω .
ω L c ( N - n ) π 2 ,
G 0 = N z 0 ( - 1 N 2 - 1 ) ,
W d = - 1 n 2 - 1 ,
Δ ω 2 c d
Δ ω max = c 5 d .
L eff = F L / π = L R / ( 1 - R ) ,
ω α = 0 ,             k α = 0.
λ p / 2 = π c / ω m ( N - n ) ,
cos γ = n / ,
Δ ϕ = ( 2 π ) 3 3 n 5 t 2 L r 41 E ¯ λ 3 ( Δ - r 41 n 2 E ¯ 2 3 ¯ )
| V V g | = ρ ρ 2 + R g ( G + G a ) ,

Metrics