Abstract

The availability of coherent sources producing usable amounts of power in the optical frequency range has stimulated considerable research in optical communications. Devices such as oscillators, modulators, detectors, and ancillary apparatus having desirable characteristics exist and are being used to design and build prototype terminals. Two possible media are being studied and means are being sought to improve their performance. They are 1) through-the-atmosphere propagation and 2) enclosed media with appropriate focusing and directing elements.

Experimental optical transmission systems can readily be assembled with information capacities in a single RF channel comparable to those of microwave radio or millimeter waveguide. Such optical systems are not yet competitive for high reliability common carrier service because 1) long-distance transmission techniques of adequate reliability have not yet been advanced, and 2) optical repeater components are not yet competitive with their lower frequency counterparts. Some features characteristic of optical transmission systems are reviewed in this paper, along with a brief indication of the state-of-the-art for major components.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.
  2. W. H. Steier, “Coupling of high peak power pulses from He-Ne lasers,” Proc. IEEE, to be submitted.
  3. I. P. Kaminow, E. H. Turner, “Electrooptic light modulator,” this issue.
  4. O. E. DeLange, unpublished.
  5. E. I. Gordon, J. D. Rigden, “The Fabry-Perot electrooptic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.
  6. J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
    [Crossref]
  7. H. Z. Cummins, N. Knable, “Single sideband modulation of coherent light by Bragg reflection from acoustic waves,” Proc. IEEE (Correspondence), vol. 51, p. 1246, September1963.
    [Crossref]
  8. F. K. Reinhart, “Light modulation by the electrooptic effect in reverse biased gallium phosphide PN junctions,” Appl. Phys. Letts., vol. 5, pp. 148–150, 1964.
    [Crossref]
  9. D. C. Hogg, “Effect of the troposphere on the propagation of coherent optical waves,” presented at the 1965 IEEE Antennas and Propagation Symposium, Washington, D. C.
  10. D. C. Hogg, “On the spectrum of optical waves propagated through the atmosphere,” Bell Sys. Tech. J., vol. 42, p. 2967, November1963.
  11. R. E. Hufnagel, N. R. Stanley, “Modulation transfer function associated with image transmission through turbulent media,” J. Opt. Soc. Am., vol. 54, pp. 52–61, January1964.
    [Crossref]
  12. D. M. Chase, “Power loss in propagation through a turbulent medium for an optical-heterodyne system with angle tracking,” J. Opt. Soc. Am., vol. 56, pp. 33–40, January1966.
    [Crossref]
  13. I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
    [Crossref]
  14. T. S. Chu, “Attenuation of laser beams by precipitation in the atmosphere,” presented at the 1966 URSI Spring Meeting, Washington, D. C.
  15. D. C. Hogg, “Scattering and attenuation due to snow at optical wavelengths,” Nature, vol. 203, p. 396, July25, 1964.
    [Crossref]
  16. L. U. Kibler, unpublished.
  17. E. A. J. Marcatili, “Ray propagation in beam waveguides with redirectors,” Bell Sys. Tech. J., vol. 45, pp. 105–114, January1966.
  18. S. E. Miller, “Directional control in light-wave guidance,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1727–1739, July1964.
  19. Lens guidance of electromagnetic waves was first proposed by G. Goubau for millimeter waves. See G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961.
    [Crossref]
  20. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.
  21. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.
  22. For a large bibliography see H. J. Kogelnik, “Modes in optical resonators,” in Advances in Lasers. New York: Dekker, 1966.
  23. D. Marcuse, S. E. Miller, “Analysis of tubular gas lens,” Bell Sys. Tech. J., vol. 43, pp. 1759–1782, July1964.
  24. D. Marcuse, “Theory of a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 734–739, November1965.
    [Crossref]
  25. D. Marcuse, “Properties of periodic gas lenses,” Bell Sys. Tech. J., vol. 44, pp. 2083–2116, November1965.
  26. D. Marcuse, “Comparison between a gas lens and its equivalent thin lens,” Bell Sys. Tech. J., to be published.
  27. E. A. J. Marcatili, “Modes in a sequence of thick astigmatic lens-like focusers,” Bell Sys. Tech. J., vol. 43, pp. 2887–2904, November1964.
  28. S. E. Miller, “Alternating gradient focusing and related properties of conventional convergent lens focusing,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1741–1758, July1964.
  29. D. W. Berreman, “A lens of light guide using convectively disstorted thermal gradient in gases,” Bell Sys. Tech. J., vol. 43, pp. 1469–1475, July1964.
  30. A. C. Beck, “Thermal gas lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1818–1820, July1964.
  31. A. C. Beck, “Gas mixture lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1821–1825, July1964.
  32. W. H. Steier, “Some characteristics of alternating gradient optical transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-4, pp. 228–233, May1966.
    [Crossref]
  33. W. H. Steier, “Measurement on a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 740–748, November1965.
    [Crossref]
  34. J. Hirano, Y. Fukatsu, “Stability of a light beam in a beam waveguide,” Proc. IEEE, vol. 52, pp. 1284–1292, November1964.
    [Crossref]
  35. D. Marcuse, “Probability of ray position in beam waveguides,” to be published.
  36. D. Marcuse, “Statistical treatment of light-ray propagation in beam-waveguides,” Bell Sys. Tech. J., vol. 44, pp. 2065–2081, November1965.
  37. D. Marcuse, “Propagation of light rays through a lens-waveguide with curved axis,” Bell Sys. Tech. J., vol. 43, pp. 741–753, March1964.
  38. W. H. Steier, “Statistical effects of random variations in the components of a beam waveguide,” Bell Sys. Tech. J., vol. 54, pp. 451–471, March1966.
  39. S. E. Miller, “Light propagation in generalized lens-like media,” Bell Sys. Tech. J., vol. 44, pp. 2017–2063, November1965.
  40. D. Marcuse, “Deformation of fields propagating through gas lenses,” Bell Sys. Tech. J., to be published.
  41. E. A. J. Marcatili, to be published.
  42. J. P. Gordon, “Optics of general guiding media,” Bell Sys. Tech. J., vol. 45, pp. 321–331, February1966.
  43. R. C. Miller, N. C. Wittwer, “Secondary-emission amplification at microwave frequencies,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 49–59, April1965.
    [Crossref]
  44. R. P. Riesz, “High-speed semiconductor photodiodes,” Rev. Sci. Instr., vol. 33, pp. 994–998, September1962.
    [Crossref]
  45. W. M. Sharpless, “Cartridge-type point-contact photodiode,” Proc. IEEE (Correspondence), vol. 52, pp. 207–208, February1964.
    [Crossref]
  46. M. V. Schneider, to be published.
  47. D. Marcuse, “Noise performance of light frequency receivers,” to be published.
  48. H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE, vol. 50, pp. 1604–1608, July1962.
    [Crossref]
  49. O. E. DeLange, unpublished.
  50. A good survey with many references is J. R. Meyer-Arendt, C. B. Emmanuel, “Optical scintillation: A survey of the literature,” U. S. Dept. of Commerce, National Bureau of Standards, Boulder, Colo., NBS Tech. Note 225, April5, 1965.
  51. V. I. Tatarski, Wave Propagation in a Turbulent Medium. New York: McGraw-Hill, 1961.
  52. L. A. Chernov, Wave Propagation in a Random Medium. New York: McGraw-Hill, 1960.
  53. H. A. Gebbie et al., “Atmospheric transmission in the 1 to 14 μregion,” Proc. Roy. Soc., vol. 206, p. 87, 1951.
    [Crossref]
  54. J. H. Taylor, H. W. Yates, “Atmospheric transmission in infrared,” J. Opt. Soc. Am., p. 225, March1957.
  55. S. W. Kurnick, R. N. Zitter, B. D. Williams, “Attenuation of infrared radiation by fog,” J. Opt. Soc. Am., vol. 50, pp. 578–583, June1960.
    [Crossref]
  56. A. Arnulf et al.., “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am., vol. 47, pp. 491–498, June1957.
    [Crossref]
  57. L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
    [Crossref]
  58. H. Melchior, W. T. Lynch, “Signal and noise response of high speed germanium avalanche photodiodes,” IEEE Trans. on Electron Devices, to be published.
  59. E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” this issue.

1966 (5)

D. M. Chase, “Power loss in propagation through a turbulent medium for an optical-heterodyne system with angle tracking,” J. Opt. Soc. Am., vol. 56, pp. 33–40, January1966.
[Crossref]

E. A. J. Marcatili, “Ray propagation in beam waveguides with redirectors,” Bell Sys. Tech. J., vol. 45, pp. 105–114, January1966.

W. H. Steier, “Some characteristics of alternating gradient optical transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-4, pp. 228–233, May1966.
[Crossref]

W. H. Steier, “Statistical effects of random variations in the components of a beam waveguide,” Bell Sys. Tech. J., vol. 54, pp. 451–471, March1966.

J. P. Gordon, “Optics of general guiding media,” Bell Sys. Tech. J., vol. 45, pp. 321–331, February1966.

1965 (10)

R. C. Miller, N. C. Wittwer, “Secondary-emission amplification at microwave frequencies,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 49–59, April1965.
[Crossref]

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

S. E. Miller, “Light propagation in generalized lens-like media,” Bell Sys. Tech. J., vol. 44, pp. 2017–2063, November1965.

D. Marcuse, “Statistical treatment of light-ray propagation in beam-waveguides,” Bell Sys. Tech. J., vol. 44, pp. 2065–2081, November1965.

W. H. Steier, “Measurement on a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 740–748, November1965.
[Crossref]

D. Marcuse, “Theory of a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 734–739, November1965.
[Crossref]

D. Marcuse, “Properties of periodic gas lenses,” Bell Sys. Tech. J., vol. 44, pp. 2083–2116, November1965.

I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
[Crossref]

Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.

Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[Crossref]

1964 (13)

D. C. Hogg, “Scattering and attenuation due to snow at optical wavelengths,” Nature, vol. 203, p. 396, July25, 1964.
[Crossref]

F. K. Reinhart, “Light modulation by the electrooptic effect in reverse biased gallium phosphide PN junctions,” Appl. Phys. Letts., vol. 5, pp. 148–150, 1964.
[Crossref]

E. A. J. Marcatili, “Modes in a sequence of thick astigmatic lens-like focusers,” Bell Sys. Tech. J., vol. 43, pp. 2887–2904, November1964.

S. E. Miller, “Alternating gradient focusing and related properties of conventional convergent lens focusing,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1741–1758, July1964.

D. W. Berreman, “A lens of light guide using convectively disstorted thermal gradient in gases,” Bell Sys. Tech. J., vol. 43, pp. 1469–1475, July1964.

A. C. Beck, “Thermal gas lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1818–1820, July1964.

A. C. Beck, “Gas mixture lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1821–1825, July1964.

S. E. Miller, “Directional control in light-wave guidance,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1727–1739, July1964.

J. Hirano, Y. Fukatsu, “Stability of a light beam in a beam waveguide,” Proc. IEEE, vol. 52, pp. 1284–1292, November1964.
[Crossref]

R. E. Hufnagel, N. R. Stanley, “Modulation transfer function associated with image transmission through turbulent media,” J. Opt. Soc. Am., vol. 54, pp. 52–61, January1964.
[Crossref]

D. Marcuse, S. E. Miller, “Analysis of tubular gas lens,” Bell Sys. Tech. J., vol. 43, pp. 1759–1782, July1964.

D. Marcuse, “Propagation of light rays through a lens-waveguide with curved axis,” Bell Sys. Tech. J., vol. 43, pp. 741–753, March1964.

W. M. Sharpless, “Cartridge-type point-contact photodiode,” Proc. IEEE (Correspondence), vol. 52, pp. 207–208, February1964.
[Crossref]

1963 (3)

D. C. Hogg, “On the spectrum of optical waves propagated through the atmosphere,” Bell Sys. Tech. J., vol. 42, p. 2967, November1963.

H. Z. Cummins, N. Knable, “Single sideband modulation of coherent light by Bragg reflection from acoustic waves,” Proc. IEEE (Correspondence), vol. 51, p. 1246, September1963.
[Crossref]

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electrooptic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

1962 (2)

H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE, vol. 50, pp. 1604–1608, July1962.
[Crossref]

R. P. Riesz, “High-speed semiconductor photodiodes,” Rev. Sci. Instr., vol. 33, pp. 994–998, September1962.
[Crossref]

1961 (3)

Lens guidance of electromagnetic waves was first proposed by G. Goubau for millimeter waves. See G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961.
[Crossref]

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.

1960 (1)

1957 (2)

A. Arnulf et al.., “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am., vol. 47, pp. 491–498, June1957.
[Crossref]

J. H. Taylor, H. W. Yates, “Atmospheric transmission in infrared,” J. Opt. Soc. Am., p. 225, March1957.

1951 (1)

H. A. Gebbie et al., “Atmospheric transmission in the 1 to 14 μregion,” Proc. Roy. Soc., vol. 206, p. 87, 1951.
[Crossref]

Anderson, L. K.

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

Arnulf, A.

Beck, A. C.

A. C. Beck, “Thermal gas lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1818–1820, July1964.

A. C. Beck, “Gas mixture lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1821–1825, July1964.

Berreman, D. W.

D. W. Berreman, “A lens of light guide using convectively disstorted thermal gradient in gases,” Bell Sys. Tech. J., vol. 43, pp. 1469–1475, July1964.

Boyd, G. D.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.

Chabot, A.

I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
[Crossref]

Chase, D. M.

Chernov, L. A.

L. A. Chernov, Wave Propagation in a Random Medium. New York: McGraw-Hill, 1960.

Chu, T. S.

T. S. Chu, “Attenuation of laser beams by precipitation in the atmosphere,” presented at the 1966 URSI Spring Meeting, Washington, D. C.

Cummins, H. Z.

H. Z. Cummins, N. Knable, “Single sideband modulation of coherent light by Bragg reflection from acoustic waves,” Proc. IEEE (Correspondence), vol. 51, p. 1246, September1963.
[Crossref]

D’Asaro, L. A.

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

DeLange, O. E.

O. E. DeLange, unpublished.

O. E. DeLange, unpublished.

Emmanuel, C. B.

A good survey with many references is J. R. Meyer-Arendt, C. B. Emmanuel, “Optical scintillation: A survey of the literature,” U. S. Dept. of Commerce, National Bureau of Standards, Boulder, Colo., NBS Tech. Note 225, April5, 1965.

Fox, A. G.

Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.

Fukatsu, Y.

J. Hirano, Y. Fukatsu, “Stability of a light beam in a beam waveguide,” Proc. IEEE, vol. 52, pp. 1284–1292, November1964.
[Crossref]

Gebbie, H. A.

H. A. Gebbie et al., “Atmospheric transmission in the 1 to 14 μregion,” Proc. Roy. Soc., vol. 206, p. 87, 1951.
[Crossref]

Goetzberger, A.

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

Goldstein, I.

I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
[Crossref]

Gordon, E. I.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electrooptic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” this issue.

Gordon, J. P.

J. P. Gordon, “Optics of general guiding media,” Bell Sys. Tech. J., vol. 45, pp. 321–331, February1966.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.

Goubau, G.

Lens guidance of electromagnetic waves was first proposed by G. Goubau for millimeter waves. See G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961.
[Crossref]

Heffner, H.

H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE, vol. 50, pp. 1604–1608, July1962.
[Crossref]

Hirano, J.

J. Hirano, Y. Fukatsu, “Stability of a light beam in a beam waveguide,” Proc. IEEE, vol. 52, pp. 1284–1292, November1964.
[Crossref]

Hogg, D. C.

D. C. Hogg, “Scattering and attenuation due to snow at optical wavelengths,” Nature, vol. 203, p. 396, July25, 1964.
[Crossref]

D. C. Hogg, “On the spectrum of optical waves propagated through the atmosphere,” Bell Sys. Tech. J., vol. 42, p. 2967, November1963.

D. C. Hogg, “Effect of the troposphere on the propagation of coherent optical waves,” presented at the 1965 IEEE Antennas and Propagation Symposium, Washington, D. C.

Hufnagel, R. E.

Kaminow, I. P.

I. P. Kaminow, E. H. Turner, “Electrooptic light modulator,” this issue.

Kibler, L. U.

L. U. Kibler, unpublished.

Knable, N.

H. Z. Cummins, N. Knable, “Single sideband modulation of coherent light by Bragg reflection from acoustic waves,” Proc. IEEE (Correspondence), vol. 51, p. 1246, September1963.
[Crossref]

Kogelnik, H. J.

For a large bibliography see H. J. Kogelnik, “Modes in optical resonators,” in Advances in Lasers. New York: Dekker, 1966.

Kurnick, S. W.

Li, T.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.

Lynch, W. T.

H. Melchior, W. T. Lynch, “Signal and noise response of high speed germanium avalanche photodiodes,” IEEE Trans. on Electron Devices, to be published.

Marcatili, E. A. J.

E. A. J. Marcatili, “Ray propagation in beam waveguides with redirectors,” Bell Sys. Tech. J., vol. 45, pp. 105–114, January1966.

E. A. J. Marcatili, “Modes in a sequence of thick astigmatic lens-like focusers,” Bell Sys. Tech. J., vol. 43, pp. 2887–2904, November1964.

E. A. J. Marcatili, to be published.

Marcuse, D.

D. Marcuse, “Statistical treatment of light-ray propagation in beam-waveguides,” Bell Sys. Tech. J., vol. 44, pp. 2065–2081, November1965.

D. Marcuse, “Theory of a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 734–739, November1965.
[Crossref]

D. Marcuse, “Properties of periodic gas lenses,” Bell Sys. Tech. J., vol. 44, pp. 2083–2116, November1965.

D. Marcuse, S. E. Miller, “Analysis of tubular gas lens,” Bell Sys. Tech. J., vol. 43, pp. 1759–1782, July1964.

D. Marcuse, “Propagation of light rays through a lens-waveguide with curved axis,” Bell Sys. Tech. J., vol. 43, pp. 741–753, March1964.

D. Marcuse, “Probability of ray position in beam waveguides,” to be published.

D. Marcuse, “Deformation of fields propagating through gas lenses,” Bell Sys. Tech. J., to be published.

D. Marcuse, “Comparison between a gas lens and its equivalent thin lens,” Bell Sys. Tech. J., to be published.

D. Marcuse, “Noise performance of light frequency receivers,” to be published.

McMullin, P. G.

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

Melchior, H.

H. Melchior, W. T. Lynch, “Signal and noise response of high speed germanium avalanche photodiodes,” IEEE Trans. on Electron Devices, to be published.

Meyer-Arendt, J. R.

A good survey with many references is J. R. Meyer-Arendt, C. B. Emmanuel, “Optical scintillation: A survey of the literature,” U. S. Dept. of Commerce, National Bureau of Standards, Boulder, Colo., NBS Tech. Note 225, April5, 1965.

Miles, P. A.

I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
[Crossref]

Miller, R. C.

R. C. Miller, N. C. Wittwer, “Secondary-emission amplification at microwave frequencies,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 49–59, April1965.
[Crossref]

Miller, S. E.

S. E. Miller, “Light propagation in generalized lens-like media,” Bell Sys. Tech. J., vol. 44, pp. 2017–2063, November1965.

S. E. Miller, “Alternating gradient focusing and related properties of conventional convergent lens focusing,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1741–1758, July1964.

S. E. Miller, “Directional control in light-wave guidance,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1727–1739, July1964.

D. Marcuse, S. E. Miller, “Analysis of tubular gas lens,” Bell Sys. Tech. J., vol. 43, pp. 1759–1782, July1964.

Reinhart, F. K.

F. K. Reinhart, “Light modulation by the electrooptic effect in reverse biased gallium phosphide PN junctions,” Appl. Phys. Letts., vol. 5, pp. 148–150, 1964.
[Crossref]

Riesz, R. P.

R. P. Riesz, “High-speed semiconductor photodiodes,” Rev. Sci. Instr., vol. 33, pp. 994–998, September1962.
[Crossref]

Rigden, J. D.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electrooptic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

Ruscio, J. T.

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[Crossref]

Schneider, M. V.

M. V. Schneider, to be published.

Schwering, F.

Lens guidance of electromagnetic waves was first proposed by G. Goubau for millimeter waves. See G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961.
[Crossref]

Sharpless, W. M.

W. M. Sharpless, “Cartridge-type point-contact photodiode,” Proc. IEEE (Correspondence), vol. 52, pp. 207–208, February1964.
[Crossref]

Smith, P. W.

Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.

Stanley, N. R.

Steier, W. H.

W. H. Steier, “Some characteristics of alternating gradient optical transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-4, pp. 228–233, May1966.
[Crossref]

W. H. Steier, “Statistical effects of random variations in the components of a beam waveguide,” Bell Sys. Tech. J., vol. 54, pp. 451–471, March1966.

W. H. Steier, “Measurement on a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 740–748, November1965.
[Crossref]

W. H. Steier, “Coupling of high peak power pulses from He-Ne lasers,” Proc. IEEE, to be submitted.

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium. New York: McGraw-Hill, 1961.

Taylor, J. H.

J. H. Taylor, H. W. Yates, “Atmospheric transmission in infrared,” J. Opt. Soc. Am., p. 225, March1957.

Turner, E. H.

I. P. Kaminow, E. H. Turner, “Electrooptic light modulator,” this issue.

Williams, B. D.

Wittwer, N. C.

R. C. Miller, N. C. Wittwer, “Secondary-emission amplification at microwave frequencies,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 49–59, April1965.
[Crossref]

Yates, H. W.

J. H. Taylor, H. W. Yates, “Atmospheric transmission in infrared,” J. Opt. Soc. Am., p. 225, March1957.

Zitter, R. N.

Appl. Phys. Letts. (2)

F. K. Reinhart, “Light modulation by the electrooptic effect in reverse biased gallium phosphide PN junctions,” Appl. Phys. Letts., vol. 5, pp. 148–150, 1964.
[Crossref]

L. K. Anderson, P. G. McMullin, L. A. D’Asaro, A. Goetzberger, “Microwave photodiodes exhibiting micro-plasma free carrier multiplication,” Appl. Phys. Letts., vol. 6, pp. 62–64, February1965.
[Crossref]

Bell Sys. Tech. J. (18)

D. Marcuse, “Properties of periodic gas lenses,” Bell Sys. Tech. J., vol. 44, pp. 2083–2116, November1965.

J. P. Gordon, “Optics of general guiding media,” Bell Sys. Tech. J., vol. 45, pp. 321–331, February1966.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot electrooptic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.

D. C. Hogg, “On the spectrum of optical waves propagated through the atmosphere,” Bell Sys. Tech. J., vol. 42, p. 2967, November1963.

E. A. J. Marcatili, “Ray propagation in beam waveguides with redirectors,” Bell Sys. Tech. J., vol. 45, pp. 105–114, January1966.

S. E. Miller, “Directional control in light-wave guidance,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1727–1739, July1964.

E. A. J. Marcatili, “Modes in a sequence of thick astigmatic lens-like focusers,” Bell Sys. Tech. J., vol. 43, pp. 2887–2904, November1964.

S. E. Miller, “Alternating gradient focusing and related properties of conventional convergent lens focusing,” Bell Sys. Tech. J., vol. 43, Part 2, pp. 1741–1758, July1964.

D. W. Berreman, “A lens of light guide using convectively disstorted thermal gradient in gases,” Bell Sys. Tech. J., vol. 43, pp. 1469–1475, July1964.

A. C. Beck, “Thermal gas lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1818–1820, July1964.

A. C. Beck, “Gas mixture lens measurements,” Bell Sys. Tech. J., vol. 43, pp. 1821–1825, July1964.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.

D. Marcuse, S. E. Miller, “Analysis of tubular gas lens,” Bell Sys. Tech. J., vol. 43, pp. 1759–1782, July1964.

D. Marcuse, “Statistical treatment of light-ray propagation in beam-waveguides,” Bell Sys. Tech. J., vol. 44, pp. 2065–2081, November1965.

D. Marcuse, “Propagation of light rays through a lens-waveguide with curved axis,” Bell Sys. Tech. J., vol. 43, pp. 741–753, March1964.

W. H. Steier, “Statistical effects of random variations in the components of a beam waveguide,” Bell Sys. Tech. J., vol. 54, pp. 451–471, March1966.

S. E. Miller, “Light propagation in generalized lens-like media,” Bell Sys. Tech. J., vol. 44, pp. 2017–2063, November1965.

IEEE J. of Quantum Electronics (2)

Proposed by A. G. Fox and realized by P. W. Smith, “Stabilized single-frequency output from a long laser cavity,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 343–348, November1965.

R. C. Miller, N. C. Wittwer, “Secondary-emission amplification at microwave frequencies,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 49–59, April1965.
[Crossref]

IEEE J. of Quantum Electronics (Correspondence) (1)

J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965.
[Crossref]

IEEE Trans. on Microwave Theory and Techniques (3)

D. Marcuse, “Theory of a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 734–739, November1965.
[Crossref]

W. H. Steier, “Some characteristics of alternating gradient optical transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-4, pp. 228–233, May1966.
[Crossref]

W. H. Steier, “Measurement on a thermal gradient gas lens,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 740–748, November1965.
[Crossref]

IRE Trans. on Antennas and Propagation (1)

Lens guidance of electromagnetic waves was first proposed by G. Goubau for millimeter waves. See G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961.
[Crossref]

J. Opt. Soc. Am. (5)

Nature (1)

D. C. Hogg, “Scattering and attenuation due to snow at optical wavelengths,” Nature, vol. 203, p. 396, July25, 1964.
[Crossref]

Proc. IEEE (2)

I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE, vol. 53, pp. 1172–1180, September1965.
[Crossref]

J. Hirano, Y. Fukatsu, “Stability of a light beam in a beam waveguide,” Proc. IEEE, vol. 52, pp. 1284–1292, November1964.
[Crossref]

Proc. IEEE (Correspondence) (2)

H. Z. Cummins, N. Knable, “Single sideband modulation of coherent light by Bragg reflection from acoustic waves,” Proc. IEEE (Correspondence), vol. 51, p. 1246, September1963.
[Crossref]

W. M. Sharpless, “Cartridge-type point-contact photodiode,” Proc. IEEE (Correspondence), vol. 52, pp. 207–208, February1964.
[Crossref]

Proc. IRE (1)

H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE, vol. 50, pp. 1604–1608, July1962.
[Crossref]

Proc. Roy. Soc. (1)

H. A. Gebbie et al., “Atmospheric transmission in the 1 to 14 μregion,” Proc. Roy. Soc., vol. 206, p. 87, 1951.
[Crossref]

Rev. Sci. Instr. (1)

R. P. Riesz, “High-speed semiconductor photodiodes,” Rev. Sci. Instr., vol. 33, pp. 994–998, September1962.
[Crossref]

Other (19)

D. Marcuse, “Comparison between a gas lens and its equivalent thin lens,” Bell Sys. Tech. J., to be published.

O. E. DeLange, unpublished.

A good survey with many references is J. R. Meyer-Arendt, C. B. Emmanuel, “Optical scintillation: A survey of the literature,” U. S. Dept. of Commerce, National Bureau of Standards, Boulder, Colo., NBS Tech. Note 225, April5, 1965.

V. I. Tatarski, Wave Propagation in a Turbulent Medium. New York: McGraw-Hill, 1961.

L. A. Chernov, Wave Propagation in a Random Medium. New York: McGraw-Hill, 1960.

H. Melchior, W. T. Lynch, “Signal and noise response of high speed germanium avalanche photodiodes,” IEEE Trans. on Electron Devices, to be published.

E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” this issue.

M. V. Schneider, to be published.

D. Marcuse, “Noise performance of light frequency receivers,” to be published.

D. C. Hogg, “Effect of the troposphere on the propagation of coherent optical waves,” presented at the 1965 IEEE Antennas and Propagation Symposium, Washington, D. C.

W. H. Steier, “Coupling of high peak power pulses from He-Ne lasers,” Proc. IEEE, to be submitted.

I. P. Kaminow, E. H. Turner, “Electrooptic light modulator,” this issue.

O. E. DeLange, unpublished.

T. S. Chu, “Attenuation of laser beams by precipitation in the atmosphere,” presented at the 1966 URSI Spring Meeting, Washington, D. C.

L. U. Kibler, unpublished.

D. Marcuse, “Probability of ray position in beam waveguides,” to be published.

For a large bibliography see H. J. Kogelnik, “Modes in optical resonators,” in Advances in Lasers. New York: Dekker, 1966.

D. Marcuse, “Deformation of fields propagating through gas lenses,” Bell Sys. Tech. J., to be published.

E. A. J. Marcatili, to be published.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Block diagram of optical communications transmission experiment.

Fig. 2
Fig. 2

(a) Schematic of optical maser and sketch of passive cavity resonance in relation to Doppler-broadened line. (b) Alternative structure for reflector providing separation of passive cavity resonances. (c) Alternative arrangement for reflector providing high peak power pulsed output.

Fig. 3
Fig. 3

Measured sideband spectrum of 6328Å helium-neon laser.

Fig. 4
Fig. 4

Schematic of optical modulator using electrooptic effect in potassium dihydrogen phosphate (KDP).

Fig. 5
Fig. 5

Schematic of photoelastic modulator.

Fig. 6
Fig. 6

Effect of refractive index inhomogeneities on optical wavefronts. (a) Large scale irregularity bending. (b) Small scale irregularity scattering.

Fig. 7
Fig. 7

Photograph of coherent optical beam as perturbed by the earth’s atmosphere under fair weather conditions.

Fig. 8
Fig. 8

Received laser sideband spectrum (wavelength=6328Å) after transmission over 2.6 km through a clear earth atmosphere.

Fig. 9
Fig. 9

Measured transmission vs. wavelength for the earth’s atmosphere under clear weather conditions.

Fig. 10
Fig. 10

Measurement of 2.6 km transmission loss in rain showers (9/24/65).

Fig. 11
Fig. 11

Measurement of 2.6 km transmission loss in a fog (9/15/65).

Fig. 12
Fig. 12

Measurement of 2.6 km transmission loss in another fog (9/21/65).

Fig. 13
Fig. 13

Beam broadening due to snow at a wavelength of 6328Å, path length 2.6 km; excessive attenuations (at the maximum of the beam pattern) in curves 1–5 are 3.5, 5.0, 13.6, 15.6, and 17.9 dB/km, respectively, corresponding to increasingly heavy snowfalls.

Fig. 14
Fig. 14

Two general approaches to light wave guidance. (a) Continuous guidance. (b) Intermittent guidance with servo control of beam direction.

Fig. 15
Fig. 15

Schematic of wave guidance using a sequence of lenses.

Fig. 16
Fig. 16

Diagram of ray path in a sequence of lenses with transverse lens position errors.

Fig. 17
Fig. 17

Computed transverse beam shapes after passing through 0, 120, 121, and 251 lenses having focal length according to (5).

Fig. 18
Fig. 18

Schematic of tubular thermal gas lens and associated radial distributions of gas velocity, gas temperature, and gas index of refraction.

Fig. 19
Fig. 19

Heterodyne receiving detector alignment effects. (a) Spot coincidence. (b) Wavefront alignment. (c) Field rotational alignment. (d) Mode purity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D = 1 2 d 2 λ .
R min d 3 λ 2 .
w = 2 λ f π
E = E 0 - ( r / w ) 2 .
Maximum Beam Displacement = 2 ( number of lenses ) 1 / 2 Lens Displacement .
f ( r ) = f 0 [ 1 + 0.02 ( r a ) 2 ]
I d = e n η = P h ν e η
I d ~ E ν 2 .
S N s h = cos Φ A c A η P s h ν Δ f sin ( π d α / λ ) ( π d α / λ )

Metrics