Abstract

The development of stress in evaporated dielectric and metal films, used as optical coatings, has been investigated experimentally by observing the bending of a thin silica strip as it becomes coated. The strip forms one mirror of a laser interferometer mounted within the coating chamber, giving high measurement sensitivity. Stress data on a number of materials commonly used in coating are presented, and the behavior of multilayer coatings investigated. Analysis of the effect of film stress upon the figure of optical surfaces is given, and the influence of stress upon the mechanical stability of multilayers is discussed.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Campbell, Electron Reliability and Microminaturization 2, 207 (1963).
    [CrossRef]
  2. M. A. Novice, Brit. J. Appl. Phys. 13, 561 (1962).
    [CrossRef]
  3. H. Blackburn, D. S. Campbell, Proc. 8th Natl. Vacuum Symp. 2, 947 (1961).
  4. A. Brenner, S. J. Senderoff, J. Res. Natl. Bur. Std. 42, 105 (1949).
    [CrossRef]
  5. F. Abelès, J. Phys. Radium 11, 310 (1950).
    [CrossRef]
  6. M. A. Novice, Vacuum 14, 385 (1964).
    [CrossRef]
  7. H. P. Murbach, H. Wilman, Proc. Phys. Soc. (London) B66, 905 (1953).
  8. H. F. Turner, Tech. Repts. on Thick Thin Films, (Bausch & Lomb, Rochester, N. Y., 1951).

1964

M. A. Novice, Vacuum 14, 385 (1964).
[CrossRef]

1963

D. S. Campbell, Electron Reliability and Microminaturization 2, 207 (1963).
[CrossRef]

1962

M. A. Novice, Brit. J. Appl. Phys. 13, 561 (1962).
[CrossRef]

1961

H. Blackburn, D. S. Campbell, Proc. 8th Natl. Vacuum Symp. 2, 947 (1961).

1953

H. P. Murbach, H. Wilman, Proc. Phys. Soc. (London) B66, 905 (1953).

1950

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

1949

A. Brenner, S. J. Senderoff, J. Res. Natl. Bur. Std. 42, 105 (1949).
[CrossRef]

Abelès, F.

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

Blackburn, H.

H. Blackburn, D. S. Campbell, Proc. 8th Natl. Vacuum Symp. 2, 947 (1961).

Brenner, A.

A. Brenner, S. J. Senderoff, J. Res. Natl. Bur. Std. 42, 105 (1949).
[CrossRef]

Campbell, D. S.

D. S. Campbell, Electron Reliability and Microminaturization 2, 207 (1963).
[CrossRef]

H. Blackburn, D. S. Campbell, Proc. 8th Natl. Vacuum Symp. 2, 947 (1961).

Murbach, H. P.

H. P. Murbach, H. Wilman, Proc. Phys. Soc. (London) B66, 905 (1953).

Novice, M. A.

M. A. Novice, Vacuum 14, 385 (1964).
[CrossRef]

M. A. Novice, Brit. J. Appl. Phys. 13, 561 (1962).
[CrossRef]

Senderoff, S. J.

A. Brenner, S. J. Senderoff, J. Res. Natl. Bur. Std. 42, 105 (1949).
[CrossRef]

Turner, H. F.

H. F. Turner, Tech. Repts. on Thick Thin Films, (Bausch & Lomb, Rochester, N. Y., 1951).

Wilman, H.

H. P. Murbach, H. Wilman, Proc. Phys. Soc. (London) B66, 905 (1953).

Brit. J. Appl. Phys.

M. A. Novice, Brit. J. Appl. Phys. 13, 561 (1962).
[CrossRef]

Electron Reliability and Microminaturization

D. S. Campbell, Electron Reliability and Microminaturization 2, 207 (1963).
[CrossRef]

J. Phys. Radium

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

J. Res. Natl. Bur. Std.

A. Brenner, S. J. Senderoff, J. Res. Natl. Bur. Std. 42, 105 (1949).
[CrossRef]

Proc. 8th Natl. Vacuum Symp.

H. Blackburn, D. S. Campbell, Proc. 8th Natl. Vacuum Symp. 2, 947 (1961).

Proc. Phys. Soc. (London)

H. P. Murbach, H. Wilman, Proc. Phys. Soc. (London) B66, 905 (1953).

Vacuum

M. A. Novice, Vacuum 14, 385 (1964).
[CrossRef]

Other

H. F. Turner, Tech. Repts. on Thick Thin Films, (Bausch & Lomb, Rochester, N. Y., 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Film-stress interferometer.

Fig. 2
Fig. 2

Experimental arrangement for continuous measurement of film stress during evaporation.

Fig. 3
Fig. 3

Recorder trace of fringe displacement and film reflectivity.

Fig. 4
Fig. 4

Film stress in evaporated zinc sulfide on fused silica at ambient temperature. Evaporation rate: 1, 2.5 Å/sec; 2, 22 Å/sec.

Fig. 5
Fig. 5

Film stress in magnesium fluoride: 1, direct evaporation from molybdenum, evaporation rate 42 Å/sec; 2, indirect radiative heating, evaporation rate 12 Å/sec.

Fig. 6
Fig. 6

Thorium oxyfluoride, indirect radiative heating, evaporation rate: 1, 24 Å/sec; 2, 12 Å/sec.

Fig. 7
Fig. 7

Lead fluoride evaporated from platinum. Evaporation rate: 1, 82 Å/sec; 2, 38 Å/sec; 3, 70 Å/sec showing stress relief in a quarter-wave film.

Fig. 8
Fig. 8

Cryolite and chiolite evaporated by indirect radiative heating: 1, cryolite, evaporation rate 35 Å/sec; 2, cryolite, evaporation rate 23 Å/sec; 3, chiolite, evaporation rate 40 Å/sec.

Fig. 9
Fig. 9

Calcium fluoride evaporated from molybdenum. Evaporation rate 54 Å/sec.

Fig. 10
Fig. 10

Cerium fluoride evaporated by indirect radiative heating. Evaporation rate 23 Å/sec.

Fig. 11
Fig. 11

Silicon monoxide evaporated by indirect radiative heating under low-pressure conditions. Evaporation rate 23 Å/sec.

Fig. 12
Fig. 12

Lead chloride evaporated from platinum. Evaporation rate: 1, 7 Å/sec; 2, 21 Å/sec.

Fig. 13
Fig. 13

Thallium compounds: a, thallium chloride, evaporation rate 40 Å/sec; b, thallium iodide, evaporation rate 28 Å/sec; c, KRS5 (thallium bromide–iodide), evaporation rate 26 Å/sec.

Fig. 14
Fig. 14

Germanium evaporated from tungsten. Evaporation rate 8 Å/sec.

Fig. 15
Fig. 15

Tellurium evaporated from silica crucible. Evaporation rate 10 Å/sec.

Fig. 16
Fig. 16

Cadmium telluride evaporated from molybdenum. Evaporation rate: 1, 6.6 Å/sec; 2, 28 Å/sec.

Fig. 17
Fig. 17

Aluminum evaporated from tungsten filament. Evaporation rate 18 Å/sec.

Fig. 18
Fig. 18

Chromium evaporated as powder from tungsten. Evaporation rate 10 Å/sec.

Fig. 19
Fig. 19

Zinc sulfide–cryolite multilayer. Twenty-one layers (HL)10H. Resultant average stress after each evaporation plotted. Broken curve shows upper limit of film stress reached during warm-up.

Fig. 20
Fig. 20

Thorium oxyfluoride–zine sulfide inultilayer. Twenty-five layers (LH)12L2. The last layer is half-wave.

Fig. 21
Fig. 21

Lead fluoride–cryolite multilayer. Thirty-one layers (HL)15H. Broken curve represents limit of stress relief during warm-up.

Tables (2)

Tables Icon

Table I Stress in Single Quarter-Wave Films

Tables Icon

Table II Stress in Multilayers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ = 3 L 2 t 4 d 2 Y · S .
S = S 1 t 1 + S 2 t 2 + S 3 t 3 + S n t n t 1 + t 2 + t 3 + t n .
S p = p ( S 1 t 1 + S 2 t 2 ) p ( t 1 + t 2 ) = S 1 t 1 + S 2 t 2 t 1 + t 2 .
S p + 1 2 = p ( S 1 t 1 + S 2 t 2 ) + S 1 t 1 p ( t 1 + t 2 ) + t 1 .
Δ = 3 ( 1 - ν ) t D 2 S 4 Y d 2 ,
Δ = 3 ( 1 - 0.25 ) × 3.4 × 10 3 × 10 - 5 4 × 6.5 × 10 5 ( 16 ) 2 = 7.5 × 10 - 6 cm = 0.15 λ ( Y = 6.5 × 10 5 kg / cm 2 ,             ν = 0.25 for glass ) .

Metrics