Abstract

With the goal to set a homogenizer to allow coupling of a stack of diodes with a disk amplifier medium for a longitudinally pumped laser or amplifier, we report simulation and experimental results on homogenization of the light supplied by a large stack of diodes. We investigate various kaleidoscope cross-section shapes and various optical coupling configurations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Bourdet, “Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror,” Appl. Opt. 44, 1018-1027 (2005).
    [CrossRef] [PubMed]
  2. G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
    [CrossRef]
  3. A. Bayramian, “A high average power femto-petawatt laser for high intensity applications,” presented at International Conference on Ultrahigh Intensity Lasers (ICUIL), Shanghai-Tongli, China (27-31 Oct. 2008).
  4. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  5. C. Bibeau, “Mercury laser project update,” HAPL Review (Oakridge National Laboratory, 21-22 March 2006).
  6. G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).
  7. M. M. Chen, J. B. Berkowitz-Mattuck, and P. E. Glaser, “The use of a kaleidoscope to obtain uniform flux over a large area in a solar or arc imaging furnace,” Appl. Opt. 2, 265-272(1963).
    [CrossRef]
  8. Y. Matsuura, D. Akiyama, and M. Miyagi, “Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt. 42, 3505-3508 (2003).
    [CrossRef] [PubMed]

2005 (2)

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

G. L. Bourdet, “Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror,” Appl. Opt. 44, 1018-1027 (2005).
[CrossRef] [PubMed]

2004 (1)

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

2003 (1)

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

1963 (1)

Akiyama, D.

Bayramian, A.

A. Bayramian, “A high average power femto-petawatt laser for high intensity applications,” presented at International Conference on Ultrahigh Intensity Lasers (ICUIL), Shanghai-Tongli, China (27-31 Oct. 2008).

Berkowitz-Mattuck, J. B.

Bibeau, C.

C. Bibeau, “Mercury laser project update,” HAPL Review (Oakridge National Laboratory, 21-22 March 2006).

Bourdet, G.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Bourdet, G. L.

G. L. Bourdet, “Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror,” Appl. Opt. 44, 1018-1027 (2005).
[CrossRef] [PubMed]

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

Chanteloup, J.-C.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

Chen, M. M.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Dambrine, C.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Ferré, S.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Fülöp, A.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Glaser, P. E.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Julien, Y.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Le Moal, S.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Le Touzé, G.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Matsuura, Y.

Migus, A.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

Miyagi, M.

Pichot, A.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Yu, H.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Zhao, Z.

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Proc. SPIE (2)

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” Proc. SPIE 5478, 4-7 (2004).
[CrossRef]

G. Bourdet, H. Yu, J.-C. Chanteloup, A. Fülöp, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Progress in the LUCIA project,” Proc. SPIE 5958, 1-12 (2005).

Other (2)

A. Bayramian, “A high average power femto-petawatt laser for high intensity applications,” presented at International Conference on Ultrahigh Intensity Lasers (ICUIL), Shanghai-Tongli, China (27-31 Oct. 2008).

C. Bibeau, “Mercury laser project update,” HAPL Review (Oakridge National Laboratory, 21-22 March 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Optical arrangement for the 200 mm × 5 mm × 5     mm square kaleidoscope.

Fig. 2
Fig. 2

(a) Simulated intensity repartition at the input of the kaleidoscope, (b) fast axis lineout, (c) slow axis lineout.

Fig. 3
Fig. 3

(a) Simulated intensity repartition at the output of the kaleidoscope, (b) fast axis lineout, (c) slow axis lineout.

Fig. 4
Fig. 4

Experimental lineouts (a) on the input face and (b) on the crystal face.

Fig. 5
Fig. 5

Cross section of the hexagonal kaleidoscope.

Fig. 6
Fig. 6

Optical arrangement for the 125 mm long hexagonal kaleidoscope.

Fig. 7
Fig. 7

Experimental beam profiles at the input face of the kaleidoscope.

Fig. 8
Fig. 8

Spot sizes following (a) the vertical direction (fast axis) and (b) the horizontal direction (slow axis).

Fig. 9
Fig. 9

Experimental (a) vertical beam profiles (fast axis), (b) horizontal beam profiles (slow axis).

Fig. 10
Fig. 10

V-shaped laser cavity.

Fig. 11
Fig. 11

Cross section of the hexagonal kaleidoscope.

Fig. 12
Fig. 12

Optical arrangement for the 150 mm long hexagonal kaleidoscope.

Fig. 13
Fig. 13

(a) Simulated intensity repartition at the input of the kaleidoscope, (b) fast axis lineout, (c) slow axis lineout.

Fig. 14
Fig. 14

(a) Simulated intensity repartition at the output face, (b) fast axis lineout, (c) slow axis lineout.

Fig. 15
Fig. 15

(a) Vertical beam profile (fast axis) in the crystal plane, (b) horizontal beam profile (slow axis) in the crystal plane.

Fig. 16
Fig. 16

Cross section of the octagonal kaleidoscope.

Fig. 17
Fig. 17

(a) Simulated intensity repartition at the output face of the kaleidoscope, (b) fast axis lineout, (c) slow axis lineout.

Tables (1)

Tables Icon

Table 1 Kaleidoscope Transmission versus Diffusion Angle

Metrics