Abstract

Although several hyperspectral anomaly detection algorithms have proven useful when illumination conditions provide for enough light, many of these same detection algorithms fail to perform well when shadows are also present. To date, no general approach to the problem has been demonstrated. In this paper, a novel hyperspectral anomaly detection algorithm that adapts the dimensionality of the spectral detection subspace to multiple illumination levels is described. The novel detection algorithm is applied to reflectance domain hyperspectral data that represents a variety of illumination conditions: well illuminated and poorly illuminated (i.e., shadowed). Detection results obtained for objects located in deep shadows and light–shadow transition areas suggest superiority of the novel algorithm over standard subspace RX detection.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription