Abstract

We examine the effect of temperature on the molding of chalcogenide glass for infrared (IR) lens fabrication and evaluate a molded chalcogenide glass lens. Both the adhesion of the chalcogenide glass to the mold’s surface and lens breakage depended on the initial heating temperature and on the molding temperatures in the glass molding process. In addition, the molded chalcogenide glass lens was evaluated based on transcription characteristics of the mold’s surface, IR transmittance, and x-ray diffraction patterns. From the analysis results, we verified that the chalcogenide glass lens for IR imaging application could be fabricated by well-controlled temperature conditions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
    [CrossRef]
  2. H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
    [CrossRef]
  3. A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
    [CrossRef]
  4. A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
    [CrossRef]
  5. X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
    [CrossRef]
  6. D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
    [CrossRef]
  7. Vitron GmbH, http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php.
  8. Vitron GmbH, EG-Safety Data Sheet, Chalcogenide Glass IG4
  9. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579-586 (2005).
    [CrossRef]
  10. X. H. Lu and L. S. Khim, J., “A statistical experimental study of the injection molding of optical lenses,” J. Mater. Process. Technol. 113, 189-195 (2001).
    [CrossRef]
  11. M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M (2006).
    [CrossRef]
  12. X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
    [CrossRef]
  13. J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
    [CrossRef]

2008

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

2006

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M (2006).
[CrossRef]

X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
[CrossRef]

2005

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579-586 (2005).
[CrossRef]

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

2004

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

2003

A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
[CrossRef]

2001

X. H. Lu and L. S. Khim, J., “A statistical experimental study of the injection molding of optical lenses,” J. Mater. Process. Technol. 113, 189-195 (2001).
[CrossRef]

1989

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
[CrossRef]

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

Bourget, A.

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

Cha, D. H.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Cheng, X.

X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
[CrossRef]

Franks, J.

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

Graham, A.

A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
[CrossRef]

Guimond, Y.

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

Hao, Q.

X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
[CrossRef]

Hilton, R.

A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
[CrossRef]

Jain, A.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579-586 (2005).
[CrossRef]

Katsuki, M.

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M (2006).
[CrossRef]

Khim, L. S.

X. H. Lu and L. S. Khim, J., “A statistical experimental study of the injection molding of optical lenses,” J. Mater. Process. Technol. 113, 189-195 (2001).
[CrossRef]

Kim, H. J.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Kim, H. U.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Kim, J. H.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Kim, S. S.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Kodjikian, S.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

LeBlanc, R. A.

A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
[CrossRef]

Lee, J. K.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Lu, X. H.

X. H. Lu and L. S. Khim, J., “A statistical experimental study of the injection molding of optical lenses,” J. Mater. Process. Technol. 113, 189-195 (2001).
[CrossRef]

Lucas, J.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
[CrossRef]

Ma, H. L.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
[CrossRef]

Nishii, J.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
[CrossRef]

Vandenbergh, M.

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

Xu, D.

X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
[CrossRef]

Yamagishi, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
[CrossRef]

Yamashita, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
[CrossRef]

Yi, A. Y.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579-586 (2005).
[CrossRef]

Zhang, X.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

Zhang, X. H.

H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

J. Am. Ceram. Soc.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579-586 (2005).
[CrossRef]

J. Mater. Process. Technol.

X. H. Lu and L. S. Khim, J., “A statistical experimental study of the injection molding of optical lenses,” J. Mater. Process. Technol. 113, 189-195 (2001).
[CrossRef]

J. Mater. Sci.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293-4297 (1989).
[CrossRef]

J. Non-Cryst. Solids

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49-52(2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

H. L. Ma, X. H. Zhang, and J. Lucas, “Infrared transmitting chalcogenide glass ceramics,” J. Non-Cryst. Solids 317, 270-274 (2003).
[CrossRef]

Mater. Manuf. Process.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manuf. Process. 23, 683-689 (2008).
[CrossRef]

Proc. SPIE

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M (2006).
[CrossRef]

A. Bourget, Y. Guimond, J. Franks, and M. Vandenbergh, “Molded infrared optics making night vision for cars within reach,” Proc. SPIE 5663, 182-189 (2005).
[CrossRef]

A. Graham, R. A. LeBlanc, and R. Hilton Sr., “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216-224 (2003).
[CrossRef]

X. Cheng, D. Xu, and Q. Hao, “Numerical analysis of compound aspheric lens design and fabrication,” Proc. SPIE 6027, 60273Q (2006).
[CrossRef]

Other

Vitron GmbH, http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php.

Vitron GmbH, EG-Safety Data Sheet, Chalcogenide Glass IG4

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic optical design of the test lens.

Fig. 2
Fig. 2

Schematic of the molding part in GMP-54-5S.

Fig. 3
Fig. 3

Adhesion of the chalcogenide glass to the mold’s surface coated with Re–Ir. (a) Mold surface before molding. Mold surface after molding at a temperature of (b)  330 ° C and (c)  340 ° C .

Fig. 4
Fig. 4

Form error (PV) of the prototype mold and the chalcogenide glass lens molded using prototype mold: (a) surface A and (b) surface B.

Fig. 5
Fig. 5

Schematic of the lens deformation pattern after molding.

Fig. 6
Fig. 6

Flow chart of glass lenses fabrication.

Fig. 7
Fig. 7

Form error (PV) of the chalcogenide glass lens molded using compensated mold: (a) surface A and (b) surface B.

Fig. 8
Fig. 8

Surface roughness (Ra) of the chalcogenide glass lens molded using compensated mold: (a) surface A and (b) surface B.

Fig. 9
Fig. 9

Transmittance of the chalcogenide glass before molding and of the lens molded at temperatures of 320 ° C and 340 ° C ( thickness = 2.0 mm ).

Fig. 10
Fig. 10

XRD patterns of the chalcogenide glass (a) before molding, and of the lens molded at a molding temperature of (b)  320 ° C and (c)  340 ° C .

Tables (4)

Tables Icon

Table 1 Processing Conditions for the Tungsten Carbide Mold Fabrication

Tables Icon

Table 2 Thermal and Mechanical Properties of Chalcogenide Glass (IG4)

Tables Icon

Table 3 Molding Condition and Process Parameters Used in This Study

Tables Icon

Table 4 Effect of the Temperature and Coating Type on Glass Adhesion and Lens Breakage after Molding

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z = C · r 2 1 + 1 ( 1 + K ) · C 2 · r 2 + i = 1 n A i · r 2 i ,
σ t s = λ · E · α · Δ T ( 1 ν ) ,
R convex ( surf . A ) R convex ,
R concave ( surf . B ) R concave ,
R convex ( surf . A ) R convex ,
R concave ( surf . B ) R concave .

Metrics