Abstract

We present a digital in-line holographic imaging system for measuring the size and three-dimensional position of fast-moving bubbles in air–water mixture flows. The captured holograms are numerically processed by performing a two-dimensional projection followed by local depth estimation to quickly and efficiently obtain the size and position information of multiple bubbles simultaneously. Statistical analysis on measured bubble size distributions shows that they follow lognormal or gamma distributions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Naqwi, F. Durst, and G. Kraft, “Sizing of submicrometer particles using a phase-Doppler system,” Appl. Opt. 30, 4903-4913 (1991).
    [CrossRef]
  2. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
    [CrossRef]
  3. K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998).
    [CrossRef]
  4. C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480-1492 (1997).
    [CrossRef]
  5. F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
    [CrossRef]
  6. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  7. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
    [CrossRef]
  8. J. A. Dominguez-Caballero and G. Barbastathis, “Stability of the digital holographic inverse problem as a function of particle density,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2008), paper PDPJMA6.
  9. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
    [CrossRef]
  10. J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.
  11. J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853-864 (2002).
    [CrossRef]
  12. D. Carl, B. Kemper, G. Wernicke, and G. Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004).
    [CrossRef]
  13. J. A. Dominguez-Caballero, “Digital holographic imaging of aquatic species,” Master's thesis (Massachusetts Institute of Technology, 2006).
  14. J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
    [CrossRef]
  15. S. Satake, H. Kanamori, T. Kunugi, K. Sato, T. Ito, and K. Yamamoto, “Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry,” Appl. Opt. 46, 538-543 (2007).
    [CrossRef]
  16. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071-13079 (2009).
    [CrossRef]
  17. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895-5908(2006).
    [CrossRef]
  18. W. Li, N. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007).
    [CrossRef]
  19. M. L. Tachiki, M. Itoh, and T. Yatagai, “Simultaneous depth determination of multiple objects by focus analysis in digital holography,” Appl. Opt. 47, D144-D153 (2008).
    [CrossRef]
  20. D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995).
    [CrossRef]
  21. J. Rissanen, “Stochastic complexity and modeling,” Ann. Stat. 14, 1080-1100 (1986).
    [CrossRef]
  22. NVidia, http://www.nvidia.com/object/cuda_home_new.html.
  23. J. Varley, “Submerged gas-liquid jets--bubble-size prediction,” Chem. Eng. Sci. 50, 901-905 (1995).
    [CrossRef]
  24. H. Chanson, “Air bubble entrainment in open channels: flow structure and bubble size distributions,” Int. J. Multiphase Flow 23, 193-203 (1997).
    [CrossRef]
  25. R. B. D'Agostino and M. A. Stephens, Goodness-of-Fit Techniques, Vol. 68 of Statistics, Textbooks and Monographs (Marcel-Dekker, 1986).

2009

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071-13079 (2009).
[CrossRef]

2008

2007

2006

2005

2004

2003

2002

2000

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

1998

K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998).
[CrossRef]

1997

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480-1492 (1997).
[CrossRef]

H. Chanson, “Air bubble entrainment in open channels: flow structure and bubble size distributions,” Int. J. Multiphase Flow 23, 193-203 (1997).
[CrossRef]

1995

J. Varley, “Submerged gas-liquid jets--bubble-size prediction,” Chem. Eng. Sci. 50, 901-905 (1995).
[CrossRef]

D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995).
[CrossRef]

1991

1986

J. Rissanen, “Stochastic complexity and modeling,” Ann. Stat. 14, 1080-1100 (1986).
[CrossRef]

Adrian, R. J.

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
[CrossRef]

Amato-Grill, J.

Bally, G.

Barbastathis, G.

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

J. A. Dominguez-Caballero and G. Barbastathis, “Stability of the digital holographic inverse problem as a function of particle density,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2008), paper PDPJMA6.

Brücker, C.

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480-1492 (1997).
[CrossRef]

Callens, N.

Carl, D.

Chanson, H.

H. Chanson, “Air bubble entrainment in open channels: flow structure and bubble size distributions,” Int. J. Multiphase Flow 23, 193-203 (1997).
[CrossRef]

Cheong, F. C.

Dabiri, D.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

D'Agostino, R. B.

R. B. D'Agostino and M. A. Stephens, Goodness-of-Fit Techniques, Vol. 68 of Statistics, Textbooks and Monographs (Marcel-Dekker, 1986).

Davis, C.

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

Davis, C. S.

Dixon, L.

Dominguez-Caballero, J. A.

J. A. Dominguez-Caballero and G. Barbastathis, “Stability of the digital holographic inverse problem as a function of particle density,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2008), paper PDPJMA6.

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

J. A. Dominguez-Caballero, “Digital holographic imaging of aquatic species,” Master's thesis (Massachusetts Institute of Technology, 2006).

Dreyfus, R.

Dubois, F.

Durst, F.

Fugal, J. P.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Gharib, M.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

Grier, D. G.

Hibiki, T.

K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998).
[CrossRef]

Hu, Q.

W. Li, N. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007).
[CrossRef]

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

Ito, T.

Itoh, M.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Kanamori, H.

Kemper, B.

Kraft, G.

Kunugi, T.

Li, W.

W. Li, N. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007).
[CrossRef]

J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853-864 (2002).
[CrossRef]

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

Loomis, N.

W. Li, N. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007).
[CrossRef]

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

Meng, H.

Milgram, J.

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

Milgram, J. H.

Mishima, K.

K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998).
[CrossRef]

Modarress, D.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

Naqwi, A.

Pan, G.

Pereira, F.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

Pu, Y.

Reynolds, D.

D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995).
[CrossRef]

Rissanen, J.

J. Rissanen, “Stochastic complexity and modeling,” Ann. Stat. 14, 1080-1100 (1986).
[CrossRef]

Rose, R.

D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995).
[CrossRef]

Satake, S.

Sato, K.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Schockaert, C.

Schulz, T. J.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Shaw, R. A.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Stephens, M. A.

R. B. D'Agostino and M. A. Stephens, Goodness-of-Fit Techniques, Vol. 68 of Statistics, Textbooks and Monographs (Marcel-Dekker, 1986).

Sun, B.

Tachiki, M. L.

Varley, J.

J. Varley, “Submerged gas-liquid jets--bubble-size prediction,” Chem. Eng. Sci. 50, 901-905 (1995).
[CrossRef]

Wernicke, G.

Xiao, K.

Yamamoto, K.

Yatagai, T.

Yourassowsky, C.

Ann. Stat.

J. Rissanen, “Stochastic complexity and modeling,” Ann. Stat. 14, 1080-1100 (1986).
[CrossRef]

Appl. Opt.

Chem. Eng. Sci.

J. Varley, “Submerged gas-liquid jets--bubble-size prediction,” Chem. Eng. Sci. 50, 901-905 (1995).
[CrossRef]

Exp. Fluids

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
[CrossRef]

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000).
[CrossRef]

IEEE Trans. Speech Audio Process.

D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995).
[CrossRef]

Int. J. Multiphase Flow

H. Chanson, “Air bubble entrainment in open channels: flow structure and bubble size distributions,” Int. J. Multiphase Flow 23, 193-203 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480-1492 (1997).
[CrossRef]

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Nucl. Eng. Des.

K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998).
[CrossRef]

Opt. Express

Other

J. A. Dominguez-Caballero, “Digital holographic imaging of aquatic species,” Master's thesis (Massachusetts Institute of Technology, 2006).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.

J. A. Dominguez-Caballero and G. Barbastathis, “Stability of the digital holographic inverse problem as a function of particle density,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2008), paper PDPJMA6.

R. B. D'Agostino and M. A. Stephens, Goodness-of-Fit Techniques, Vol. 68 of Statistics, Textbooks and Monographs (Marcel-Dekker, 1986).

NVidia, http://www.nvidia.com/object/cuda_home_new.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

In-line digital holography experimental setup.

Fig. 2
Fig. 2

A 1024 × 1024 pixel portion of a sample hologram of bubbles in an air–water mixture flow.

Fig. 3
Fig. 3

Demonstration of the edge minimum intensity focus metric. (a) intensity “column” corresponding to edge pixels a, b, and c as a function of distance z from the camera plane. The intensity is minimum at the focal plane. (b) In the intensity “column” for interior pixel d, the intensity is not minimum at the focal plane. (c) Intensity projection near a bubble that was located at z = 17.5 mm .

Fig. 4
Fig. 4

Diagram of key steps of the proposed DH data analysis algorithm. (a) Intensity projection that contains all the in-focus pixels. (b) The original depth map that records the axial position of every pixel. (c) Extracted edges of the thresholded intensity projection. (d) Refined depth map records only the axial value of in-focus bubble edges.

Fig. 5
Fig. 5

Depth map resulting from six bubbles whose intensity projections overlap. After applying a GMM, they are successfully separated and their individual axial positions are determined. In-focus bubble images are shown in the insets.

Fig. 6
Fig. 6

Data processing result from a 1024 × 1024 pixel hologram. (a) 3D visualization of data processing results from a single hologram (diameters not to scale). (b) Bubble size distribution.

Fig. 7
Fig. 7

Histogram of bubble sizes and probability distribution fits.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( x , y ; z ) = F 1 { F { I ( x , y ) } ( u , v ) · H ( u , v ; z ) } ,
H ( u , v ; z ) = exp { i π λ z ( u 2 + v 2 ) } .
f ( d ; μ , σ ) = 1 d σ 2 π e ( ln d μ ) 2 2 σ 2 ,
f ( d ; a , b ) = d a 1 e d / b b a Γ ( a ) ,

Metrics