Abstract

Active optical imaging is preferred over radio frequency counterparts due to its higher resolution, faster area search rate, and relatively easier learning and interpretation of the image by a human observer. However, in imaging through atmosphere, one should consider dispersive effects of multiple scatterings and turbulence-induced wave perturbations, which give rise to intensity fluctuations and wavefront distortions. All these phenomena broaden and distort the spatial impulse response known as the point spread function (PSF). In this paper, a spatially multiplexed multi-input–multi-output imaging system design, inspired by multispot diffuse indoor communications configuration first introduced by Yun and Kavehrad [IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262–265], is presented. At the transmitter, a computer-generated holographic beam splitter is used to generate arrays of beamlets, providing a faster area search rate and a uniformly distributed illumination over the entire target area. Then, at the receiver, an array of photodetectors is used to collect the reflected rays. While a Monte Carlo ray-tracing algorithm developed at Pennsylvania State University, Center for Information and Communications Research (CICTR), is used to model imaging in multiple-scattering turbid media, phase screens are employed to simulate turbulence-induced wavefront distortions. Hence, a comprehensive framework is exploited that takes into account possible sources of degradation. Using this framework, system performance is analyzed under different meteorological conditions. Restoration techniques such as adaptive-optics corrections, blind deconvolution, and time gating are used to improve the contrast and enhance the sharpness and resolution of the images.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Yun and M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262-265.
  2. R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
    [CrossRef]
  3. F. G. Smith, The Infrared & Electro-Optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2, pp. 99-100.
  4. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, 1950).
  5. H. M. Gupta, “Space-time response of a cloud communication channel to an optical signal,” Opt. Quantum Electron. 12, 499-509 (1980).
    [CrossRef]
  6. D. Deirmendjian, “Scattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187-196 (1964).
    [CrossRef]
  7. B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (Pennsylvania State University, 2005).
  8. B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (Pennsylvania State University, 2007).
  9. M. Kavehrad and B. Hamzeh, “Laser communication system using wavelet-based multi-rate signaling,” in Proceedings of IEEE Military Communications Conference (IEEE, 2004), Vol. 1, pp. 398-403.
  10. B. Hamzeh and M. Kavehrad, “OCDMA coded free space optical links for wireless optical mesh networks,” IEEE Trans. Commun. 52, 2165-2174 (2004).
    [CrossRef]
  11. Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
    [CrossRef]
  12. Z. Hajjarian, Jarir Fadlullah, and M. Kavehrad, “Use of Markov chain in atmospheric channel modeling of free space laser communications,” in Proceedings of IEEE Military Communications Conference (IEEE, 2008).
  13. A. Ishimaru, “Multiple scattering, turbulence, rough surfaces and remote sensing,” in Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. II, pp. 253-325.
  14. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC, 1996), pp. 57-122.
  15. R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
    [CrossRef]
  16. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), pp. 1-66.
  17. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372-383 (1994).
    [CrossRef]
  18. B. J. Herman and L. A. Strugala, “Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence,” Proc. SPIE. 1221, 183-192 (1990).
    [CrossRef]
  19. R. L. Lucke, “Synthetic aperture ladar simulations with phase screens and Fourier propagation,” in IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, pp. 1788-1798.
  20. P. Negrete-Regagnon, “Practical aspects of image recovery by means of the bispectrum,” J. Opt. Soc. Am. 13, 1557-1576(1996).
    [CrossRef]
  21. S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access: joint optimization of multi-beam transmitter and angle diversity receiver,” Proc. SPIE 3850, 72-77 (1999).
    [CrossRef]
  22. S. Jivkova and M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitter,” in Proceedings of the IEEE International Conference on Communications (IEEE, 1999), Vol. 1, pp. 604-608.
  23. S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. (2000).
    [CrossRef]
  24. International Electrotechnical Commission, “Safety of laser products--Part 1: Equipment, classification, requirements and user's guide,” IEC 825-1 International Standard (1993).
  25. D. Kundur, “Blind deconvolution of still images using recursive inverse filtering,” Master's thesis (University of Toronto, 1995).

2009

Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
[CrossRef]

2004

B. Hamzeh and M. Kavehrad, “OCDMA coded free space optical links for wireless optical mesh networks,” IEEE Trans. Commun. 52, 2165-2174 (2004).
[CrossRef]

2003

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

2000

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. (2000).
[CrossRef]

1999

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access: joint optimization of multi-beam transmitter and angle diversity receiver,” Proc. SPIE 3850, 72-77 (1999).
[CrossRef]

1996

P. Negrete-Regagnon, “Practical aspects of image recovery by means of the bispectrum,” J. Opt. Soc. Am. 13, 1557-1576(1996).
[CrossRef]

1994

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372-383 (1994).
[CrossRef]

1992

R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
[CrossRef]

1990

B. J. Herman and L. A. Strugala, “Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence,” Proc. SPIE. 1221, 183-192 (1990).
[CrossRef]

1980

H. M. Gupta, “Space-time response of a cloud communication channel to an optical signal,” Opt. Quantum Electron. 12, 499-509 (1980).
[CrossRef]

1964

Adams, J. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), pp. 1-66.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Oxford U. Press, 1950).

Dainty, J.

R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
[CrossRef]

Davis, W. R.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Deirmendjian, D.

Fadlullah, J.

Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
[CrossRef]

Fadlullah, Jarir

Z. Hajjarian, Jarir Fadlullah, and M. Kavehrad, “Use of Markov chain in atmospheric channel modeling of free space laser communications,” in Proceedings of IEEE Military Communications Conference (IEEE, 2008).

Forman, S. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Gavel, D. T.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372-383 (1994).
[CrossRef]

Glindemann, A.

R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
[CrossRef]

Gupta, H. M.

H. M. Gupta, “Space-time response of a cloud communication channel to an optical signal,” Opt. Quantum Electron. 12, 499-509 (1980).
[CrossRef]

Hajjarian, Z.

Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
[CrossRef]

Z. Hajjarian, Jarir Fadlullah, and M. Kavehrad, “Use of Markov chain in atmospheric channel modeling of free space laser communications,” in Proceedings of IEEE Military Communications Conference (IEEE, 2008).

Hamzeh, B.

B. Hamzeh and M. Kavehrad, “OCDMA coded free space optical links for wireless optical mesh networks,” IEEE Trans. Commun. 52, 2165-2174 (2004).
[CrossRef]

M. Kavehrad and B. Hamzeh, “Laser communication system using wavelet-based multi-rate signaling,” in Proceedings of IEEE Military Communications Conference (IEEE, 2004), Vol. 1, pp. 398-403.

Hamzeh, B. Y.

B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (Pennsylvania State University, 2005).

Hatch, R. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Herman, B. J.

B. J. Herman and L. A. Strugala, “Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence,” Proc. SPIE. 1221, 183-192 (1990).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), pp. 1-66.

Ishimaru, A.

A. Ishimaru, “Multiple scattering, turbulence, rough surfaces and remote sensing,” in Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. II, pp. 253-325.

Jivkova, S.

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. (2000).
[CrossRef]

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access: joint optimization of multi-beam transmitter and angle diversity receiver,” Proc. SPIE 3850, 72-77 (1999).
[CrossRef]

S. Jivkova and M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitter,” in Proceedings of the IEEE International Conference on Communications (IEEE, 1999), Vol. 1, pp. 604-608.

Johansson, E. M.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372-383 (1994).
[CrossRef]

Kavehrad, M.

Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
[CrossRef]

B. Hamzeh and M. Kavehrad, “OCDMA coded free space optical links for wireless optical mesh networks,” IEEE Trans. Commun. 52, 2165-2174 (2004).
[CrossRef]

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. (2000).
[CrossRef]

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access: joint optimization of multi-beam transmitter and angle diversity receiver,” Proc. SPIE 3850, 72-77 (1999).
[CrossRef]

Z. Hajjarian, Jarir Fadlullah, and M. Kavehrad, “Use of Markov chain in atmospheric channel modeling of free space laser communications,” in Proceedings of IEEE Military Communications Conference (IEEE, 2008).

M. Kavehrad and B. Hamzeh, “Laser communication system using wavelet-based multi-rate signaling,” in Proceedings of IEEE Military Communications Conference (IEEE, 2004), Vol. 1, pp. 398-403.

S. Jivkova and M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitter,” in Proceedings of the IEEE International Conference on Communications (IEEE, 1999), Vol. 1, pp. 604-608.

G. Yun and M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262-265.

Knowlton, R. C.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Kundur, D.

D. Kundur, “Blind deconvolution of still images using recursive inverse filtering,” Master's thesis (University of Toronto, 1995).

Lane, R.

R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
[CrossRef]

Lucke, R. L.

R. L. Lucke, “Synthetic aperture ladar simulations with phase screens and Fourier propagation,” in IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, pp. 1788-1798.

Marino, R. M.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

McLaughlin, J. L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Mooney, J. G.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Negrete-Regagnon, P.

P. Negrete-Regagnon, “Practical aspects of image recovery by means of the bispectrum,” J. Opt. Soc. Am. 13, 1557-1576(1996).
[CrossRef]

O'Brien, M. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), pp. 1-66.

Roggemann, M. C.

M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC, 1996), pp. 57-122.

Rowe, G. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Skelly, L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Smith, F. G.

F. G. Smith, The Infrared & Electro-Optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2, pp. 99-100.

Stephens, T.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Strugala, L. A.

B. J. Herman and L. A. Strugala, “Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence,” Proc. SPIE. 1221, 183-192 (1990).
[CrossRef]

Welsh, B. M.

M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC, 1996), pp. 57-122.

Wu, B.

B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (Pennsylvania State University, 2007).

Yun, G.

G. Yun and M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262-265.

Appl. Opt.

IEEE J. Sel. Areas Commun.

Z. Hajjarian, M. Kavehrad, and J. Fadlullah, “Analysis of wireless optical communications feasibility in presence of clouds using Markov chains,” IEEE J. Sel. Areas Commun. 27, 1526-1534 (2009).
[CrossRef]

IEEE Trans. Commun.

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. (2000).
[CrossRef]

B. Hamzeh and M. Kavehrad, “OCDMA coded free space optical links for wireless optical mesh networks,” IEEE Trans. Commun. 52, 2165-2174 (2004).
[CrossRef]

J. Opt. Soc. Am.

P. Negrete-Regagnon, “Practical aspects of image recovery by means of the bispectrum,” J. Opt. Soc. Am. 13, 1557-1576(1996).
[CrossRef]

Opt. Quantum Electron.

H. M. Gupta, “Space-time response of a cloud communication channel to an optical signal,” Opt. Quantum Electron. 12, 499-509 (1980).
[CrossRef]

Proc. SPIE

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

S. Jivkova and M. Kavehrad, “Multi-spot diffusing configuration for wireless infrared access: joint optimization of multi-beam transmitter and angle diversity receiver,” Proc. SPIE 3850, 72-77 (1999).
[CrossRef]

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372-383 (1994).
[CrossRef]

Proc. SPIE.

B. J. Herman and L. A. Strugala, “Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence,” Proc. SPIE. 1221, 183-192 (1990).
[CrossRef]

Waves Random Media

R. Lane, A. Glindemann, and J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992).
[CrossRef]

Other

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), pp. 1-66.

B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (Pennsylvania State University, 2005).

B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (Pennsylvania State University, 2007).

M. Kavehrad and B. Hamzeh, “Laser communication system using wavelet-based multi-rate signaling,” in Proceedings of IEEE Military Communications Conference (IEEE, 2004), Vol. 1, pp. 398-403.

Z. Hajjarian, Jarir Fadlullah, and M. Kavehrad, “Use of Markov chain in atmospheric channel modeling of free space laser communications,” in Proceedings of IEEE Military Communications Conference (IEEE, 2008).

A. Ishimaru, “Multiple scattering, turbulence, rough surfaces and remote sensing,” in Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. II, pp. 253-325.

M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC, 1996), pp. 57-122.

R. L. Lucke, “Synthetic aperture ladar simulations with phase screens and Fourier propagation,” in IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, pp. 1788-1798.

S. Jivkova and M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitter,” in Proceedings of the IEEE International Conference on Communications (IEEE, 1999), Vol. 1, pp. 604-608.

International Electrotechnical Commission, “Safety of laser products--Part 1: Equipment, classification, requirements and user's guide,” IEC 825-1 International Standard (1993).

D. Kundur, “Blind deconvolution of still images using recursive inverse filtering,” Master's thesis (University of Toronto, 1995).

G. Yun and M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262-265.

F. G. Smith, The Infrared & Electro-Optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2, pp. 99-100.

S. Chandrasekhar, Radiative Transfer (Oxford U. Press, 1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic illustration of the proposed system setup.

Fig. 2
Fig. 2

Scattering phase function for different types of cloud.

Fig. 3
Fig. 3

Spatial distribution of (a) image photons and (b) backscattered photons at the receiver plane for a channel of optical thickness 1 (2 round trip).

Fig. 4
Fig. 4

Temporal spatial distribution of image photons and backscattered photons at the receiver plane for a channel of optical thickness 1 (2 round-trip).

Fig. 5
Fig. 5

Spatial distribution of (a) image photons and (b) backscattered photons at the receiver plane for a channel of optical thickness 4 (8 round trip).

Fig. 6
Fig. 6

Temporal spatial distribution of image photons and backscattered photons at the receiver plane for a channel of optical thickness 4 (8 round trip).

Fig. 7
Fig. 7

Sample plastic 4 × 4 holographic beam splitter on the left of a quarter.

Fig. 8
Fig. 8

Captured multispots image.

Fig. 9
Fig. 9

Simplified geometry of the receiving aperture.

Fig. 10
Fig. 10

Photodetected images for a system (a) without AO, (b) with AO correction for Z 2 and Z 3 , (c) with AO corrections up to Z 55 , (d) with AO corrections up to Z 78 , (e) with AO corrections up to Z 120 , and (f) with AO corrections up to Z 300 ! .

Fig. 11
Fig. 11

PSF for a system (a) without AO, (b) with AO correction for Z 2 and Z 3 , (c) with AO corrections up to Z 55 , (d) with AO corrections up to Z 78 , (e) with AO corrections up to Z 120 , and (f) with AO corrections up to Z 300 ! .

Tables (2)

Tables Icon

Table 1 Contrast Improvement Using Time Gates of Different Durations

Tables Icon

Table 2 Blind-Deconvolution Performance Improvement with Adaptive-Optics Correction Using Low-Order Zernikes

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

4 π P ( θ ) d ψ = 0 π 0 2 π P ( θ ) sin ( θ ) d θ d φ = 1.
P ( d ) = 1 D sca e ( d / D sca ) ,
τ = β sca L = L D sca .
I coh = e 2 τ I 0 ,
U ( r ) = exp [ χ ( r ) + j ψ ( r ) ] U 0 ( r ) ,
Φ n ( κ ) = 0.033 C n 2 κ 11 / 3 , 1 / L 0 < κ < 1 / l 0 ,
Φ p ( k ) = 0.023 r 0 5 / 3 | κ | 11 / 3 , 1 / L 0 < κ < 1 / l 0 ,
ω ( R ) = ω 0 1 + ( λ R π ω 0 2 ) .
SNIR = 10 log 10 ( N I h ν N B h ν + N N h ν ¯ ) ,
MSE ( f ^ ) = 100 [ a f ^ ( x , y ) f ( x , y ) ] 2 f ( x , y ) 2 ,
a = f ( x , y ) f ^ ( x , y ) f ^ ( x , y ) 2 .

Metrics