Abstract

Microbridges are miniature suspended structures fabricated in silicon. Passing a current through the microbridge can heat it up to the point of incandescence. A glowing microbridge can be used as a wideband light source. This study presents a method for optical measurement of the temperature of a microbridge. Spectroscopic measurements of microbridges are optically challenging, because the multilayer structures cause interference effects. To determine the temperature from the emitted spectrum, the emissivity was modeled with thin-film Fresnel equations. Temperatures of 5001100°C were obtained from the measured spectra at different levels of applied power. The range is limited by the sensitivity of the detectors at lower power levels and by the stability of the bridge at higher levels. Results of the optical measurements were compared with contact temperature measurements made with a microthermocouple in the same temperature range. The results of the two methods agree within 100K.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
    [CrossRef]
  2. T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
    [CrossRef]
  3. P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.
  4. J. Tu, D. Howard, S. D. Collins, and R. L. Smith, “Micromachined, silicon filament light source for spectrophotometric microsystems,” Appl. Opt. 42, 2388-2397 (2003).
    [CrossRef] [PubMed]
  5. P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
    [CrossRef]
  6. H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
    [CrossRef]
  7. J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007).
    [CrossRef]
  8. C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
    [CrossRef]
  9. L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
    [CrossRef]
  10. J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  12. B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
    [CrossRef]
  13. G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994).
    [CrossRef]
  14. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561-601 (1980).
    [CrossRef]
  15. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205-1209 (1965).
    [CrossRef]

2009 (1)

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

2007 (1)

J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007).
[CrossRef]

2005 (1)

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

2003 (1)

2002 (1)

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

2000 (1)

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

1999 (1)

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

1994 (1)

G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994).
[CrossRef]

1992 (1)

C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
[CrossRef]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561-601 (1980).
[CrossRef]

1965 (1)

Aaltonen, J.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Ádám, M.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Akimoto, K.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Bársony, I.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Blomberg, M.

M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).

Collins, S. D.

Corman, T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

DeWitt, D. P.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Dmitriev, V. K.

P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.

Dücso, Cs.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Early, E. A.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Fan, J.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Ferber, A. M.

P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.

Franssila, S.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Fürjes, P.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Grigoras, K.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Hæggström, E.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Hanhijärvi, K.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Howard, D.

Huiku, M.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994).
[CrossRef]

Kälvesten, E.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

Karasawa, S.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Kassamakov, I.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Keranen, K.

M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
[CrossRef]

Kim, D. Y.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

Kim, J.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

Kim, S. G.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

King, W. P.

J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007).
[CrossRef]

Kirpilenko, G.

P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.

Kodato, S.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Koo, J. G.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

Lee, B. J.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Lee, J.

J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007).
[CrossRef]

Lehto, A.

M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561-601 (1980).
[CrossRef]

Malitson, I. H.

Mastrangelo, C. H.

C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
[CrossRef]

Meriläinen, P. T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

Modine, F. A.

G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994).
[CrossRef]

Morrissey, A.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Muller, R. S.

C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
[CrossRef]

Ohlckers, P.

P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.

Ohya, S.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Park, H. S.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

Roh, T. M.

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

Rusanen, O.

M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
[CrossRef]

Saarela, V.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Sainiemi, L.

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

Smith, R. L.

Stemme, G.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

Takahashi, K.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Tsai, B. K.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Tu, J.

Vizváry, Zs.

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Weckström, K.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).

Yeh, J. H.

C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
[CrossRef]

Yuasa, H.

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

Zhang, Z. M.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Electron. Devices (1)

C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992).
[CrossRef]

Int. J. Electron. (1)

J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999).
[CrossRef]

J. Appl. Phys. (1)

G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994).
[CrossRef]

J. Microelectromech. Syst. (1)

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561-601 (1980).
[CrossRef]

J. Thermophys. Heat Transfer (1)

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005).
[CrossRef]

Sens. Actuators A, Phys. (3)

J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007).
[CrossRef]

L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009).
[CrossRef]

P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002).
[CrossRef]

Other (4)

H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274.
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).

M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258.
[CrossRef]

P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross section schematic and (b) scanning electron microscope image of the microbridge.

Fig. 2
Fig. 2

Measured extinction coefficient for silicon at 914 ° C with a doping level of 5 × 10 18 cm 3 .

Fig. 3
Fig. 3

Configuration of the optical measurement setup.

Fig. 4
Fig. 4

Measured spectra of the microbridge at different temperatures.

Fig. 5
Fig. 5

(a) Measured and modeled spectra and (b) corresponding emissivities.

Fig. 6
Fig. 6

Comparison of measurement results obtained with contact and optical methods. Temperature is presented as a function of input power to the microbridge.

Fig. 7
Fig. 7

Comparison of measurement results obtained with contact and optical methods. Normalized resistances are presented as a function of temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( λ , T ) = B ϵ ( λ , T ) 2 h c 2 λ 5 1 exp ( h c λ k T ) 1 ,

Metrics