Abstract

Significant motion artifacts limit the performance of conventional full-field optical coherence tomography (FF-OCT) for in vivo imaging. We present a theoretical and experimental study of those limitations. A new FF-OCT system suppressing most of artifacts due to sample motions is demonstrated using instantaneous phase shifting with nonpolarizing optics and pulsed illumination. The experimental setup is based on a Linnik-type interferometer illuminated by the superluminescence emission from a TiAl2O3 waveguide crystal. En face tomographic images are calculated as a combination of two phase-opposed interferometric images acquired simultaneously by two CCD cameras placed at both outputs of the interferometer, with a spatial resolution of 0.8μm×1.6μm (axial×transverse) and a detection sensitivity of 60dB.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef]
  2. A. F. Fercher, “Optical coherence tomography,” J Biomed. Opt. 1, 157-173 (1996).
    [CrossRef]
  3. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147-149 (1998).
    [CrossRef]
  4. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white-light full-field optical coherence tomography,” Opt. Express 13, 6286-6295 (2005).
    [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  6. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
    [CrossRef]
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and G. J. Fujimoto, “Rapid acquisition of in-vivobiological images by use of optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996).
    [CrossRef]
  8. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998).
    [CrossRef]
  9. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
    [CrossRef]
  10. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
    [CrossRef]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
    [CrossRef]
  12. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530-533 (2002).
    [CrossRef]
  13. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002).
    [CrossRef]
  15. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738-743 (2006).
    [CrossRef]
  16. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
    [CrossRef]
  17. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637-6645 (2002).
    [CrossRef]
  18. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt. 47, 459-466 (2008).
    [CrossRef]
  19. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351-1353 (2005).
    [CrossRef]
  20. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
    [CrossRef]
  21. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816-818 (2003).
    [CrossRef]
  22. M. A. Choma, C. Yand, and J. A. Izatt, “Instantaneous quandrature low-coherence interferometry with 3×3 fiber optic couplers,” Opt. Lett. 28, 2162-2164 (2003).
    [CrossRef]
  23. R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).
  24. M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985).
    [CrossRef]
  25. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998(2004).
    [CrossRef]
  26. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  27. A. M. Kowalevicz, T. Ko, I. Hart, and G. J. Fujimoto, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349-353(2002).
  28. D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131-148 (1996).
    [CrossRef]

2009 (1)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
[CrossRef]

2008 (1)

2006 (1)

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738-743 (2006).
[CrossRef]

2005 (2)

2004 (6)

2003 (2)

2002 (4)

1998 (2)

1996 (3)

1995 (1)

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

1986 (1)

1985 (1)

M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985).
[CrossRef]

1976 (1)

R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).

Akiba, M.

Aldifi, R. J.

R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).

Bajraszewski, T.

Beaurepaire, E.

Benattar, L.

Boccara, A. C.

Boccara, C.

Boppart, S. A.

Bouma, B. E.

Cense, B.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Chen, T. C.

Choi, E. S.

Choi, W. J.

Choma, M. A.

Dabu, R.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
[CrossRef]

Dainty, J. C.

de Boer, J. F.

De Martino, A.

Dobre, G. M.

Drévillon, B.

Drexler, W.

Dubois, A.

Duker, J. S.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
[CrossRef]

A. F. Fercher, “Optical coherence tomography,” J Biomed. Opt. 1, 157-173 (1996).
[CrossRef]

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Fujimoto, G. J.

Fujimoto, J. G.

Gale, D. M.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Grieve, K.

Haaga, R.

R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).

Hart, I.

Hee, M. R.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Henkelman, R. M.

M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985).
[CrossRef]

Hermann, B.

Hitzenberg, C. K.

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hrebesh, M. S.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
[CrossRef]

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Izatt, J. A.

Jackson, D. A.

Kamp, G.

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ko, T.

Ko, T. H.

Kowalczyk, A.

Kowalevicz, A. M.

Kulkarni, M. D.

Laude, B.

Le, T.

Le Gargasson, J. F.

Lecaque, R.

Lee, B. H.

Leitgeb, R. A.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

MacIntyre, W. J.

R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).

Moneron, G.

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738-743 (2006).
[CrossRef]

G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351-1353 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef]

Moulton, P. F.

Na, J.

Nassif, N. A.

Paques, M.

Park, B. H.

Pether, M. I.

Pierce, M. C.

Podoleanu, A. G.

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Rollins, A. M.

Ryu, S. Y.

Sahel, J.

Sato, M.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Schwartz, L.

Simonutti, M.

Srinivasan, V. J.

Stingl, A.

Stinsin, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Swanson, E. A.

Tanno, N.

Tearney, G. J.

Ung-Arunyawee, R.

Unterhuber, A.

Vabre, L.

Wojtkowski, M.

Wood, M. L.

M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985).
[CrossRef]

Yand, C.

Yazdanfar, S.

Yun, S. H.

Am. J. Radiol. (1)

R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).

Appl. Opt. (5)

J Biomed. Opt. (1)

A. F. Fercher, “Optical coherence tomography,” J Biomed. Opt. 1, 157-173 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Med. Phys. (1)

M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985).
[CrossRef]

Opt. Commun. (3)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009).
[CrossRef]

A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738-743 (2006).
[CrossRef]

Opt. Express (7)

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
[CrossRef]

A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998).
[CrossRef]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white-light full-field optical coherence tomography,” Opt. Express 13, 6286-6295 (2005).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998(2004).
[CrossRef]

A. M. Kowalevicz, T. Ko, I. Hart, and G. J. Fujimoto, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349-353(2002).

Opt. Lett. (7)

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Conventional image of a microscope calibration star target. (b) Conventional FF-OCT image of the target placed outside the coherence volume and animated by a transverse motion in a direction indicated by the arrow (right). Image size: 200 μm × 200 μm .

Fig. 2
Fig. 2

Equivalent reflectivity profile used in our model for evaluating the maximal transverse speed. R max and R min are the maximum and minimum reflectivity of the sample, and p / γ is the width of a camera pixel in the sample plane, where γ is the magnification of the optical system.

Fig. 3
Fig. 3

Maximal transverse speed versus contrast of the sample. The numerical calculations for a linear transverse displacement of the sample are represented by the solid curve and computation of Eq. (4) by the dotted curve.

Fig. 4
Fig. 4

Amplitude of the tomographic signal versus axial speed of the object for continuous illumination and successive phase shifting. The numerical calculations for sinusoidal phase shifting and polychromatic illumination are represented by the solid curve, computation of Eq. (5) by the dotted curve, and the measurements by the triangles.

Fig. 5
Fig. 5

Schematic representation of the superluminescent Ti Al 2 O 3 light source. A contrapropagating configuration is used to collect the fluorescence. HR, high reflectivity; HT, high transmission; NA, numerical aperture.

Fig. 6
Fig. 6

Output fluorescent power sent into the FF-OCT setup versus incident pump power.

Fig. 7
Fig. 7

Schematic representation of the unpolarized instantaneous phase-shifting FF-OCT setup. BS, nonpolarizing broadband beam splitters; MO, microscope objectives; L1, L2, lenses; D, diaphragm; superluminescent source as described in Fig. 4.

Fig. 8
Fig. 8

(a) Effective optical spectrum of the FF-OCT setup, given by the product of the spectrum of the fluorescent source and the spectral response of the camera. The bandwidth is 135 nm centered at 755 nm . (b) Interferogram measured by the FF-OCT setup in water. The axial resolution is 1.4 μm .

Fig. 9
Fig. 9

(a) Tomographic images of a microscope calibration target animated by a transverse motion with successive and (b) instantaneous acquisition of frames. Image size: 200 μm × 200 μm .

Fig. 10
Fig. 10

Amplitude of the tomographic signal as a function of the axial speed of the sample for continuous and pulsed illumination. The numerical simulations are represented by the solid curves and the measurements by the triangles.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S 1 = k ( p γ ) 2 R max ,
S 2 = S 1 k p γ R max R min 2 Δ x x 2 .
SNR = S 1 ( S 1 S 2 ) min = ξ s a t ,
x min = 2 Δ x p γ ξ sat × R max R max R min ,
( S 1 S 2 ) 2 sin c 2 ( 4 π λ 0 v T int ) ,
v max = λ 0 4 T int .
S 1 ( x , y ) I 0 4 [ R ref + R inc + R coh ( x , y ) + 2 R ref R coh ( x , y ) cos ( φ ( x , y ) ) ] ,
S 2 ( x , y ) I 0 4 [ R ref + R inc + R coh ( x , y ) 2 R ref R coh ( x , y ) cos ( φ ( x , y ) ) ] .
( S 1 S 2 ) 2 R coh cos 2 φ .
Δ z = 2 ln 2 n π ( λ 2 Δ λ ) ,
R min = ( R ref + R inc ) 2 4 N ξ sat R ref ,

Metrics