Abstract

We present the development of a panchromatic acrylamide-based photopolymer (ABP) for holographic recording application. The scattering of the recording medium was characterized by measuring the bidirectional scattering distribution function. The dynamic range in the reflection mode of recording was evaluated by measuring the diffraction efficiencies of the holographic gratings recorded individually at 633nm, 532nm, and 473nm wavelengths at spatial frequencies of 4200lines/mm, 5000lines/mm, and 5700lines/mm, respectively. Spectral characterization of the reflection gratings, recorded using a combined single red-green-blue (RGB) beam, was carried out, and the reconstructed wavelengths were monitored and compared with the recording wavelengths. The recorded and the reconstructed wavelengths were plotted as points on the International Commission on Illumination (CIE) chromaticity diagram in order to reveal shifts due to material shrinkage in the corresponding RGB wavelengths. Finally, reflection holograms of an object were successfully recorded at all the three primary wavelengths. The results represent a strong confirmation that this ABP can be used as a panchromatic recording material and can be employed in future commercial holographic applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295-1301 (1964).
    [CrossRef]
  2. H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131-141 (2002).
    [CrossRef]
  3. T. Kubota and T. Ose, “Lippmann color holograms recorded in methylene-blue sensitized dichromated gelatine,” Opt. Lett. 1, 8-9 (1979).
    [CrossRef]
  4. M. Kawabata, A. Sato, I. Sumiyoshi, and T. Kubota, “Photopolymer system and its application to a color hologram,” Appl. Opt. 33, 2152-2156 (1994).
    [CrossRef]
  5. K. W. Steijin, “Multicolor holographic recording in Dupont holographic recording film: determination of exposure conditions for color balance,” Proc. SPIE 2688, 123-134(1996).
    [CrossRef]
  6. S. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231-241 (1997).
    [CrossRef]
  7. http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html#c2 (29 May 2009).
  8. M. Hubel and L. Solymer, “Color reflection holography: theory and experiment,” Appl. Opt. 30, 4190-4203 (1991).
    [CrossRef]
  9. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
    [CrossRef]
  10. S. Martin, C. A. Feely, and V. Toal, “Holographic characteristics of an acrylamide based recording material,” Appl. Opt. 36, 5757-5769 (1997).
    [CrossRef]
  11. I. Naydenova, R. Jallapuram, S. Martin, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
    [CrossRef]
  12. S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
    [CrossRef]
  13. J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed. (SPIE, 1995).
  14. Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
    [CrossRef]
  15. http://www.avantes.com/Chemistry/AvaLight-HAL-Tungsten-Halogen-Light-Source/Detailed-product-flyer.html (6 November 2009).
  16. I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

2006 (1)

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

2004 (1)

2002 (2)

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131-141 (2002).
[CrossRef]

1997 (2)

1996 (1)

K. W. Steijin, “Multicolor holographic recording in Dupont holographic recording film: determination of exposure conditions for color balance,” Proc. SPIE 2688, 123-134(1996).
[CrossRef]

1994 (2)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

M. Kawabata, A. Sato, I. Sumiyoshi, and T. Kubota, “Photopolymer system and its application to a color hologram,” Appl. Opt. 33, 2152-2156 (1994).
[CrossRef]

1991 (1)

1979 (1)

1964 (1)

Bjelkhagen, H. I.

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131-141 (2002).
[CrossRef]

Feely, C. A.

Howard, R.

Howard, R. G.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

Hubel, M.

Hvilsted, S.

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

Jallapuram, R.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, S. Martin, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Kawabata, M.

Kerekes, Á.

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

Kubota, T.

Leclere, P.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

Leith, E. N.

Lion, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

Lörincz, E.

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

Martin, S.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, S. Martin, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

S. Martin, C. A. Feely, and V. Toal, “Holographic characteristics of an acrylamide based recording material,” Appl. Opt. 36, 5757-5769 (1997).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Naydenova, I.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, S. Martin, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Ose, T.

Ramanujam, P. S.

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

Renotte, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

Sato, A.

Sherif, H.

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Solymer, L.

Steijin, K. W.

K. W. Steijin, “Multicolor holographic recording in Dupont holographic recording film: determination of exposure conditions for color balance,” Proc. SPIE 2688, 123-134(1996).
[CrossRef]

Stevenson, S.

S. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231-241 (1997).
[CrossRef]

Stover, J. C.

J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed. (SPIE, 1995).

Sumiyoshi, I.

Toal, V.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, S. Martin, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

S. Martin, C. A. Feely, and V. Toal, “Holographic characteristics of an acrylamide based recording material,” Appl. Opt. 36, 5757-5769 (1997).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Upatnieks, J.

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

Á. Kerekes, E. Lörincz, P. S. Ramanujam, and S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57-65 (2002).
[CrossRef]

Opt. Eng. (1)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942-3946(1994).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (4)

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. G. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37-44 (2006).
[CrossRef]

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131-141 (2002).
[CrossRef]

K. W. Steijin, “Multicolor holographic recording in Dupont holographic recording film: determination of exposure conditions for color balance,” Proc. SPIE 2688, 123-134(1996).
[CrossRef]

S. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231-241 (1997).
[CrossRef]

Other (4)

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html#c2 (29 May 2009).

J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed. (SPIE, 1995).

http://www.avantes.com/Chemistry/AvaLight-HAL-Tungsten-Halogen-Light-Source/Detailed-product-flyer.html (6 November 2009).

I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A holographic sensor,” Patent Cooperation Treaty patent application IE2006/000134 (filed on 27 November 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

CIE chromaticity diagram [4].

Fig. 2
Fig. 2

Normalized absorption spectrum of panchromatic ABP recording material.

Fig. 3
Fig. 3

Schematic diagram of scatterometer to measure BSDF.

Fig. 4
Fig. 4

M, mirror; DM, dichroic mirror; SP, spatial filter, S, shutter; L, collimating lens; BS, beam splitter; PP, photopolymer layer.

Fig. 5
Fig. 5

Experimental setup used for spectral characterization of the recorded reflection holograms/gratings.

Fig. 6
Fig. 6

BSDF data for the air (circles), glass (light squares), and uniformly polymerized layer (triangles) measured at 473 nm . The inset picture shows the BSDF of the uniformly polymerized photopolymer layer measured at 633 nm (dark squares) and 473 nm (triangles).

Fig. 7
Fig. 7

Diffraction efficiency (percent) of reflection gratings as a function of time of exposure at red (diamonds), green (squares), and blue (triangles) wavelengths.

Fig. 8
Fig. 8

Spectral characteristics of the reconstructed wavefront from the reflection holographic grating recorded using 473 nm , 532 nm , and 633 nm .

Fig. 9
Fig. 9

Comparison of the chromaticity points for the recorded and reconstructed wavelengths of the multicolor holographic grating.

Fig. 10
Fig. 10

Photograph of white light holographic reconstruction from a hologram recorded at the three primary wavelengths. The object used was a 10 cent euro coin.

Tables (2)

Tables Icon

Table 1 Photopolymer Composition

Tables Icon

Table 2 Recording Wavelengths and the Corresponding Reconstruction Wavelengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

BSDF ( θ ) = P scatter ( θ ) P incident Ω detector .
2 n Λ sin θ B = λ ,
η = I 1 s t I Incident × 100 ,

Metrics