Abstract

A fiber Bragg grating (FBG) with an inverse-Gaussian apodization function is proposed and fabricated. It is shown that such a FBG possesses dual-wavelength narrow transmission peaks and the wavelength spacing between the two peaks is easily controllable during fabrication. Incorporating such a FBG filter into a fiber laser with a linear cavity, we obtain stable dual-wavelength emission with 0.146nm wavelength spacing. This arrangement provides a simple and low cost way of achieving dual-wavelength fiber laser operation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
    [CrossRef]
  2. S. Kim and B. Lee, “Recirculating fiber delay-line filter with a fiber Bragg grating,” Appl. Opt. 37, 5469-5471 (1998).
    [CrossRef]
  3. X. Xu, Y. Dai, X. Chen, D. Jiang, and S. Xie, “Chirped and phase-sampled fiber Bragg grating for tunable DBR fiber laser,” Opt. Express 13, 3877-3882 (2005).
    [CrossRef] [PubMed]
  4. Y. G. Han, F. Fresi, L. Poti, J. H. Lee, and X. Dong, “Continuously spacing-tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser incorporating a superimposed chirped fiber Bragg grating,” Opt. Lett. 32, 1032-1034 (2007).
    [CrossRef] [PubMed]
  5. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  6. X. M. Liu, A. X. Lin, G. Y. Sun, D. S. Moon, D. Hwang, and Y. Chung, “Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters,” Appl. Opt. 47, 5637-5643 (2008).
    [CrossRef] [PubMed]
  7. L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
    [CrossRef]
  8. D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
    [CrossRef]
  9. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830-11835 (2008).
    [CrossRef] [PubMed]
  10. W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455-4459 (2009).
    [CrossRef]
  11. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
    [CrossRef]
  12. X. F. Chen, J. P. Yao, and Z. C. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30, 2068-2070 (2005).
    [CrossRef] [PubMed]
  13. M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1999), pp. 876-877.
  14. D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
    [CrossRef]
  15. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307-1320 (1994).
    [CrossRef]
  16. H. Singh and M. Zippin, “Apodized fiber Bragg gratings for DWDM applications using uniform phase mask,” in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 189-190.
  17. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-196.
    [CrossRef]

2009

2008

2007

L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
[CrossRef]

Y. G. Han, F. Fresi, L. Poti, J. H. Lee, and X. Dong, “Continuously spacing-tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser incorporating a superimposed chirped fiber Bragg grating,” Opt. Lett. 32, 1032-1034 (2007).
[CrossRef] [PubMed]

2005

1999

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

1998

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

1994

Capmany, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

Chen, D.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455-4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

Chen, X.

Chen, X. F.

Cheng, T.

L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
[CrossRef]

Chung, Y.

da Rocha, J. R. F.

M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1999), pp. 876-877.

Dai, Y.

de Sterke, C. M.

Deng, Z. C.

Dong, X.

Dong, X. Y.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Feng, S.

Fresi, F.

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

Han, Y. G.

He, S.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455-4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

Hwang, D.

Jian, S.

Jiang, D.

Jiang, M.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-196.
[CrossRef]

Kim, S.

Lee, B.

Lee, J. H.

Lima, M. J. N.

M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1999), pp. 876-877.

Lin, A. X.

Liu, D.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Liu, W.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455-4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

Liu, X. M.

Lu, S.

Mao, X.

Marti, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

Moon, D. S.

Ngo, N. Q.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Ning, T.

Ortega, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

Pastor, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

Poladian, L.

Poti, L.

Rogers, J. A.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

Shum, P.

L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
[CrossRef]

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Singh, H.

H. Singh and M. Zippin, “Apodized fiber Bragg gratings for DWDM applications using uniform phase mask,” in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 189-190.

Sipe, J. E.

Strasser, T. A.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

Sun, G. Y.

Tatay, V.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

Teixeira, A. L. J.

M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1999), pp. 876-877.

Tjin, S. C.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

Westbrook, P. S.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

Xia, L.

L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
[CrossRef]

Xie, S.

Xu, O.

Xu, X.

Yao, J. P.

Zippin, M.

H. Singh and M. Zippin, “Apodized fiber Bragg gratings for DWDM applications using uniform phase mask,” in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 189-190.

Appl. Opt.

Appl. Phys. B

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807-811 (2005).
[CrossRef]

Electron. Lett.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459-461 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455-4459 (2009).
[CrossRef]

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Microwave Opt. Technol. Lett.

L. Xia, P. Shum, and T. Cheng, “The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing,” Microwave Opt. Technol. Lett. 49, 1122-1125 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1999), pp. 876-877.

H. Singh and M. Zippin, “Apodized fiber Bragg gratings for DWDM applications using uniform phase mask,” in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 189-190.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-196.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Calculated reflection spectrum of the proposed IGAFBG, where gaps 1 and 2 can form two high transmittivity passbands in the corresponding transmission spectrum. (b)  n eff variation along the fiber axis of the IGAFBG (not to scale); the dashed curve is an inverse-Gaussian distribution.

Fig. 2
Fig. 2

Calculated reflection spectrum of a traditional Gaussian apodized FBG. The parameters used are the same as for the proposed IGAFBG, except that the apodization function is B ( z ) = exp { [ 4 ( ln 2 ) z 2 ] / ( L / 3 ) 2 } .

Fig. 3
Fig. 3

Transmission spectra of the proposed IGAFBG with a wavelength spacing of 0.146 nm (peak 1 at 1542.257 nm and peak 2 at 1542.403 nm ). Solid curve, measured spectrum; dashed curve, calculated spectrum. In simulation, n eff = 1.447 , L = 12 mm , Λ = 532.85 nm , and δ n eff ¯ = 3 × 10 4 . Figure 1(a) is the corresponding calculated reflection spectrum of the same IGAFBG.

Fig. 4
Fig. 4

Schematic diagram of the dual-channel fiber laser with an IGAFBG filter in its linear all-fiber cavity.

Fig. 5
Fig. 5

Output laser spectra: (a) two lasing lines at 1542.257 and 1542.403 nm (within the 4.5 nm wavelength domain); (b) repeated scans of the two lasing lines at 2 min intervals over half an hour at room temperature (within 1 nm wavelength domain).

Fig. 6
Fig. 6

Effective refractive index variation along the fiber axis of a standard FBG pair (not to scale).

Fig. 7
Fig. 7

Transmission spectra of an IGAFBG with a wavelength spacing of 0.1 nm . Solid curve, measured spectrum; dashed curve, calculated spectrum. In simulation, n eff = 1.447 , L = 18 mm , Λ = 532.85 nm , and δ n eff ¯ = 2.3 × 10 4 .

Fig. 8
Fig. 8

Transmission spectra of an IGAFBG with a wavelength spacing of 0.07 nm . Solid curve, measured spectrum; dashed curve, calculated spectrum. In simulation, n eff = 1.447 , L = 25 mm , Λ = 532.85 nm and δ n eff ¯ = 1.4 × 10 4 .

Metrics