Abstract

A model-based inversion scheme was used to determine absolute chromophore concentrations from multiwavelength photoacoustic images. The inversion scheme incorporated a forward model, which predicted 2D images of the initial pressure distribution as a function of the spatial distribution of the chromophore concentrations. It comprised a multiwavelength diffusion based model of the light transport, a model of acoustic propagation and detection, and an image reconstruction algorithm. The model was inverted by fitting its output to measured photoacoustic images to determine the chromophore concentrations. The scheme was validated using images acquired in a tissue phantom at wavelengths between 590nm and 980nm. The phantom comprised a scattering emulsion in which up to four tubes, filled with absorbing solutions of copper and nickel chloride at different concentration ratios, were submerged. Photoacoustic signals were detected along a line perpendicular to the tubes from which images of the initial pressure distribution were reconstructed. By varying the excitation wavelength, sets of multiwavelength photoacoustic images were obtained. The majority of the determined chromophore concentrations were within ±15% of the true value, while the concentration ratios were determined with an average accuracy of 1.2%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
    [CrossRef] [PubMed]
  2. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
    [CrossRef] [PubMed]
  4. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299-D306 (2009).
    [CrossRef] [PubMed]
  5. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  6. B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
    [CrossRef]
  7. J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
    [CrossRef]
  8. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
    [CrossRef]
  9. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
    [CrossRef] [PubMed]
  10. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
    [CrossRef]
  11. H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
    [CrossRef] [PubMed]
  12. X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
    [CrossRef] [PubMed]
  13. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
    [CrossRef]
  14. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
    [CrossRef] [PubMed]
  15. B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
    [CrossRef]
  16. C. G. Chai, Y. Q. Chen, P. C. Li, and Q. M. Luo, “Improved steady-state diffusion approximation with an anisotropic point source and the delta-Eddington phase function,” Appl. Opt. 46, 4843-4851 (2007).
    [CrossRef] [PubMed]
  17. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
    [CrossRef]
  18. W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
    [CrossRef]
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  20. M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419-7428 (1998).
    [CrossRef]
  21. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).
    [CrossRef] [PubMed]
  22. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
    [CrossRef] [PubMed]
  23. K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
    [CrossRef] [PubMed]
  24. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443-455 (2009).
    [CrossRef]
  25. J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” J. Sel. Topics Quantum Electron. in press (2010).
  26. E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
    [CrossRef] [PubMed]
  27. G. M. Hale and M. R. Querry, “Optical constants of water in 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563(1973).
    [CrossRef] [PubMed]
  28. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
    [CrossRef] [PubMed]
  29. A. J. Welch and M. J. C. v. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  30. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907-5925 (2008).
    [CrossRef] [PubMed]
  31. A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
    [PubMed]

2009 (4)

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443-455 (2009).
[CrossRef]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299-D306 (2009).
[CrossRef] [PubMed]

2008 (4)

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907-5925 (2008).
[CrossRef] [PubMed]

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

2007 (6)

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

C. G. Chai, Y. Q. Chen, P. C. Li, and Q. M. Luo, “Improved steady-state diffusion approximation with an anisotropic point source and the delta-Eddington phase function,” Appl. Opt. 46, 4843-4851 (2007).
[CrossRef] [PubMed]

2006 (4)

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

2005 (3)

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).
[CrossRef] [PubMed]

2003 (2)

K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

2000 (1)

A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
[PubMed]

1998 (1)

1997 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
[CrossRef]

1995 (1)

W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

1973 (1)

Arridge, S. R.

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443-455 (2009).
[CrossRef]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419-7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299-D306 (2009).
[CrossRef] [PubMed]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” J. Sel. Topics Quantum Electron. in press (2010).

Beard, P. C.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443-455 (2009).
[CrossRef]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).
[CrossRef] [PubMed]

K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

Blake, A. S. T.

A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
[PubMed]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Chai, C. G.

Chen, X. Y.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Chen, Y. Q.

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Chikoidze, E.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Cox, B. T.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443-455 (2009).
[CrossRef]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Dai, H. J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Deakin, C. D.

A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
[PubMed]

Delpy, D.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Elwell, C.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

Foschum, F.

Gambhir, S. S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Gemert, M. J. C. v.

A. J. Welch and M. J. C. v. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Hale, G. M.

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
[CrossRef]

Kara, S.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Khuri-Yakub, B. T.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Kienle, A.

Köstli, K. P.

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Ku, G. N.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Lao, Y.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299-D306 (2009).
[CrossRef] [PubMed]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” J. Sel. Topics Quantum Electron. in press (2010).

Laufer, J. G.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Li, P. C.

Lihong, W.

W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

Liqiong, Z.

W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

Liu, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Luo, Q. M.

Ma, T. J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Maslov, K.

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Michels, R.

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

Petley, G. W.

A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
[PubMed]

Pifferi, A.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Querry, M. R.

Raivich, G.

Schweiger, M.

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419-7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Smith, B. R.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Sterenborg, H. J. C. M.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Steven, L. J.

W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

Stocia, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Torricelli, A.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Vaithilingam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

van Veen, R. L. P.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
[CrossRef]

Wang, L. H. V.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
[CrossRef] [PubMed]

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Wang, L. V.

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Wang, X. D.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch and M. J. C. v. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Xiang, L.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Xie, X. Y.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Xing, D.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Yang, S.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Zhang, E.

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
[CrossRef]

Appl. Opt. (7)

G. M. Hale and M. R. Querry, “Optical constants of water in 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563(1973).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419-7428 (1998).
[CrossRef]

K. P. Köstli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

C. G. Chai, Y. Q. Chen, P. C. Li, and Q. M. Luo, “Improved steady-state diffusion approximation with an anisotropic point source and the delta-Eddington phase function,” Appl. Opt. 46, 4843-4851 (2007).
[CrossRef] [PubMed]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48, D299-D306 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Br. J. Anaesth. (1)

A. S. T. Blake, G. W. Petley, and C. D. Deakin, “Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits,” Br. J. Anaesth. 84, 28-32 (2000).
[PubMed]

Comp. Methods Prog. Biomed. (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Methods Prog. Biomed. 54, 141-150(1997).
[CrossRef]

W. Lihong, L. J. Steven, and Z. Liqiong, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Methods Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

Inverse Probl. (1)

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

J. Acoust. Soc. Am. (2)

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005).
[CrossRef] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Nat. Nano. (1)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nano. 3, 557-562(2008).
[CrossRef]

Nat. Protoc. (1)

H. F. Zhang, K. Maslov, and L. H. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2, 797-804 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (4)

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “in vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. , 54, 1035-1046 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE , 6086, 60861M (2006).
[CrossRef]

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

Other (2)

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” J. Sel. Topics Quantum Electron. in press (2010).

A. J. Welch and M. J. C. v. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the forward model for the case of single wavelength optical illumination (center). The image on the top right shows the absorbed optical energy distribution predicted by the light transport model for a single absorber immersed in a turbid medium. The excitation light is incident from the top of the image. The image on the bottom left shows the photoacoustic signals predicted from the absorbed energy distribution using an acoustic propagation model assuming an array of acoustic detectors along the x-axis. An image reconstruction algorithm then provides the predicted photoacoustic image shown on the bottom right.

Fig. 2
Fig. 2

Images of the acoustic pressure field calculated by the k-space model at different times after the absorption of the laser pulse. The target consists of a single absorber immersed in a scattering medium. The initial pressure distribution is shown in (a), while (b)–(d) show the propagation of the acoustic wave for subsequent times. The horizontal line indicates the target surface (e) shows the predicted photoacoustic (PA) signal, which is obtained by recording the time-dependent pressure at the element located at the center of the detector array at r = { 0 , 0 , 10 } mm . t 2 coincides with the arrival of the wave that originated in the tube and t 3 coincides with the wave from the target surface.

Fig. 3
Fig. 3

Experimental setup for the acquisition of 2D photoacoustic images of a tissue phantom at multiple excitation wavelengths.

Fig. 4
Fig. 4

Specific absorption coefficient spectra of copper (II)- chloride dihydrate ( CuCl 2 [ 2 H 2 O ] ) and nickel (II)-chloride hydrate ( NiCl 2 [ 6 H 2 O ] ) and the absorption spectra of water and lipid.

Fig. 5
Fig. 5

Comparison of measured photoacoustic image (a) with that predicted by the model, (b) acquired at a single excitation wavelength in a phantom containing four tubes filled with solutions of copper and nickel chloride. (c) and (d) Vertical and horizontal profiles through images shown in (a) and (b), respectively.

Fig. 6
Fig. 6

Absolute intraluminal concentrations of (a) copper chloride and (b) nickel chloride determined from the measured photoacoustic images plotted against the known concentrations for four different compositions of the extraluminal space. The error bars represent the resolution of the determined values, the solid line represents the line of unity, and the dashed lines indicate the ± 15 % error margin.

Fig. 7
Fig. 7

Intraluminal absorbed optical energy (a), predicted using the light transport model, as a function of the intraluminal μ a i for different μ s . Figure 7b shows the initial pressure, p 0 , as a function of c Cu i and c Ni i (and hence μ a i ) in the intraluminal space for constant Grüneisen coefficient (thin lines) and concentration- dependent Grüneisen coefficient (thick lines) calculated at two wavelengths, 680 nm and 820 nm , which coincided with high val ues for μ a of nickel and copper chloride.

Fig. 8
Fig. 8

Comparison of the photoacoustically determined R i to the known values for the four compositions of the extraluminal space. The error bars represent the resolution, the solid line represents the line of unity, and the dashed lines represent the ± 10 % margin.

Fig. 9
Fig. 9

Absolute extraluminal concentrations of copper chloride (a) and nickel chloride (b) plotted against the intraluminal concentration ratio, R i , for the four compositions of the extraluminal space. The dashed lines represent the known extraluminal copper and nickel chloride concentrations of 0.7 g l 1 and 5 g l 1 , respectively, for the four compositions of the extraluminal space.

Fig. 10
Fig. 10

Photoacoustically determined reduced scattering coefficient at 980 nm plotted against the intraluminal concentration ratios and for all four compositions of the extraluminal space. μ s predicted by Mie theory for intralipid is shown by the dashed line.

Fig. 11
Fig. 11

Absolute intraluminal concentrations of (a) copper chloride and (b) nickel chloride determined from photoacoustic images measured in a phantom containing four tubes, which are indicated by T1, T2, T3, and T4. The intraluminal concentrations are plotted against the known concentrations for four different compositions of the extravascular space. (c) Intraluminal R i calculated from the concentrations shown in (a) and (b). The error bars represent the resolution of the determined values, the solid line represents the line of unity, and the dashed lines indicate an error margin of ± 15 % for (a) and (b), and ± 10 % for (c).

Tables (6)

Tables Icon

Table 1 Average Accuracy and Resolution of the Intraluminal Concentrations of Copper and Nickel Chloride Determined Using the Inversion Scheme for Different Compositions of the Extraluminal Space

Tables Icon

Table 2 Average Accuracy and Resolution of the Photoacoustically Determined R i for the Four Compositions of the Extraluminal Space

Tables Icon

Table 3 Accuracy and Resolution of the Extraluminal Concentrations of Copper and Nickel Chloride Determined Using the Model-Based Inversion for the Four Different Preparations of the Extraluminal Space a

Tables Icon

Table 4 Mean Photoacoustically Determined (PA) Extraluminal Concentrations Ratios Compared to the Known Values, Together with the Accuracy and Resolution for Three Compositions of the Extraluminal Space

Tables Icon

Table 5 Photoacoustically Determined Reduced Scattering Coefficient and Its Resolution for the Four Compositions of the Extraluminal Space

Tables Icon

Table 6 Mean Accuracy and Resolution of c Cu i , c Ni i and R i Determined Photoacoustically in the Four Tubes of the Tissue Phantom, for the Four Compositions of the Extraluminal Space

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Q ( r , λ ) = μ a ( r , λ ) Φ 0 Φ ( r , μ a ( r , λ ) , μ s ( r , λ ) ) ,
μ a ( r , λ ) = k = 1 n α k ( λ ) c k ( r ) ,
μ s ( r , λ ) = μ s E ( r , λ ) ( 1 g E ( λ ) )
μ s E ( r , λ ) = μ s ( r , λ ) ( 1 f ( λ ) )
g E ( λ ) = g ( λ ) f ( λ ) 1 f ( λ ) ,
μ s ( r , λ ) = α scat ( λ ) k scat ( r ) ,
Q ( r , λ ) = Q ( r , λ ) e 2 y 2 r b 2 ,
p 0 ( r , λ ) = Γ ( r ) Q ( r , λ ) ,
Γ ( r ) = Γ H 2 O k = 1 n ( 1 + β k c k ( r ) ) ,
p ( r , t , λ ) = 1 ( 2 π ) 3 P 0 ( k , λ ) cos ( ω t ) exp ( i k r ) d 3 k ,
ω = c s | k | = c s k x 2 + k y 2 + k z 2
S ( x , t , λ ) = K Φ 0 p ( x , t , λ ) ,
I ( r , λ ) = K p 0 ( r , λ ) ,
μ a ( r ) = { μ a i μ a e } i = 1 , 2 , 3 n ,
φ = { c k i , c k e , k scat , K } ,
E ( φ ) = x , z , λ ( I Data I ( φ ) ) 2 ,
u = var ( φ ) = ( X X ) 1 σ 2 ,
μ a i ( λ ) = α Cu ( λ ) c Cu i + α Ni ( λ ) c Ni i + α H 2 O ( λ ) c H 2 O i for     i = 1 , 2 , 3 , , n ,
μ a e ( λ ) = α Cu ( λ ) c Cu e + α Ni ( λ ) c Ni e + α Lipid ( λ ) c Lipid + α H 2 O ( λ ) c H 2 O e ,
R i = c Ni i c Ni i + γ c Cu i × 100 % ,

Metrics