Abstract

A nonsequential ray tracing technique is used to calculate the narcissus signature in infrared (IR) imaging cameras having cooled detectors operating in the 711μm waveband. Imaging cameras based on a one-dimensional linear detector array with a scan mirror are simulated. Circularly symmetric diffractive phase surfaces commonly used in modern IR cameras are modeled including multiple diffraction orders in the narcissus retroreflection path to correctly estimate the stray light return signal. An optical design example based on a step-zoom dual field of view optical system is discussed along with the performance curves to elaborate the modeling technique. Optical methods to minimize the narcissus return signal are explained, and modeling results presented. The nonsequential ray tracing technique is found to be an effective method to accurately calculate the narcissus return signal in complex IR cameras having diffractive surfaces.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Akram, “Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3-5 μm waveband,” Appl. Opt. 49, 964-975 (2010).
    [CrossRef] [PubMed]
  2. M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
    [CrossRef]
  3. M. N. Akram and M. H. Asghar, “Step-zoom dual field-of-view infrared telescope,” Appl. Opt. 42, 2312-2316 (2003).
    [CrossRef] [PubMed]
  4. M. N. Akram, “A design study of dual field-of-view imaging systems for the 3-5 μm waveband utilizing focal plane arrays,” J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
    [CrossRef]
  5. H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
    [CrossRef]
  6. S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
    [CrossRef]
  7. J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
    [CrossRef]
  8. Zemax Development Corporation, Zemax User Manual, 3001 112th Avenue NE, Suite 202, Bellevue, WA 98004-8017, USA, 2009.
  9. E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

2010 (1)

2006 (1)

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

2003 (3)

M. N. Akram, “A design study of dual field-of-view imaging systems for the 3-5 μm waveband utilizing focal plane arrays,” J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[CrossRef]

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

M. N. Akram and M. H. Asghar, “Step-zoom dual field-of-view infrared telescope,” Appl. Opt. 42, 2312-2316 (2003).
[CrossRef] [PubMed]

2002 (2)

H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
[CrossRef]

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Akram, M. N.

M. N. Akram, “Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3-5 μm waveband,” Appl. Opt. 49, 964-975 (2010).
[CrossRef] [PubMed]

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

M. N. Akram and M. H. Asghar, “Step-zoom dual field-of-view infrared telescope,” Appl. Opt. 42, 2312-2316 (2003).
[CrossRef] [PubMed]

M. N. Akram, “A design study of dual field-of-view imaging systems for the 3-5 μm waveband utilizing focal plane arrays,” J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[CrossRef]

Asghar, M. H.

Ford, E.

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Hasenauer, D.

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Hong, S. M.

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
[CrossRef]

Kim, C. W.

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
[CrossRef]

Kim, H. S.

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
[CrossRef]

Kobayashi, M.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Kudo, J.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Okamura, T.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Tanikawa, K. A.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Wada, H.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Yu, W. K.

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

Appl. Opt. (2)

J. Opt. A: Pure Appl. Opt. (1)

M. N. Akram, “A design study of dual field-of-view imaging systems for the 3-5 μm waveband utilizing focal plane arrays,” J. Opt. A: Pure Appl. Opt. 5, 308-322 (2003).
[CrossRef]

Opt. Eng. (4)

H. S. Kim, C. W. Kim, and S. M. Hong, “Compact mid-wavelength infrared zoom camera with 20∶1 zoom range and automatic athermalization,” Opt. Eng. 41, 1661-1667(2002).
[CrossRef]

S. M. Hong, H. S. Kim, W. K. Yu, and C. W. Kim, “High performance long-wave infrared sensor with large zoom optics and high-definition television format,” Opt. Eng. 45, 123201-123209(2006).
[CrossRef]

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

Other (2)

Zemax Development Corporation, Zemax User Manual, 3001 112th Avenue NE, Suite 202, Bellevue, WA 98004-8017, USA, 2009.

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Optics design for the 7 11 μm waveband.

Fig. 2
Fig. 2

Total narcissus signature of the unoptimized optics, narrow field of view (NFOV) mode.

Fig. 3
Fig. 3

Surface-by-surface narcissus signature of the unoptimized optics, central detector pixel, narrow field of view mode.

Fig. 4
Fig. 4

Effective narcissus signature for central detector pixel of the unoptimized optics at two different focus positions and at two different camera housing temperatures, narrow field of view mode.

Fig. 5
Fig. 5

Total narcissus signature of the unoptimized optics, wide field of view (WFOV) mode.

Fig. 6
Fig. 6

Surface-by-surface narcissus signature of the unoptimized optics, central detector pixel, wide field of view mode.

Fig. 7
Fig. 7

Effective narcissus signature for central detector pixel of the unoptimized optics at two different focus positions and at two different camera housing temperatures, wide field of view mode.

Fig. 8
Fig. 8

Narcissus optimized optics design for the 7 11 μm waveband.

Fig. 9
Fig. 9

Total narcissus signature of the optimized optics, narrow field of view mode.

Fig. 10
Fig. 10

Surface-by-surface narcissus signature of the optimized optics, central detector pixel, narrow field of view mode.

Fig. 11
Fig. 11

Effective narcissus signature for central detector pixel of the optimized optics at two different focus positions and at two different camera housing temperatures, narrow field of view mode.

Fig. 12
Fig. 12

Total narcissus signature of the optimized optics, wide field of view mode.

Fig. 13
Fig. 13

Surface-by-surface narcissus signature of the optimized optics, central detector pixel, wide field of view mode.

Fig. 14
Fig. 14

Effective narcissus signature for central detector pixel of the optimized optics at two different focus positions and at two different camera housing temperatures, wide field of view mode.

Fig. 15
Fig. 15

Narcissus stop placed at the intermediate image plane in the reimager optics.

Fig. 16
Fig. 16

Total narcissus signature of the unoptimized optics with narcissus stop, narrow field of view mode.

Fig. 17
Fig. 17

Surface-by-surface narcissus signature of the unoptimized optics with narcissus stop, narrow field of view mode.

Fig. 18
Fig. 18

Effective narcissus signature for the central detector pixel of the unoptimized optics with narcissus stop, narrow and wide field of view modes and their difference.

Tables (9)

Tables Icon

Table 1 First-Order Parameters of Reimager Optics

Tables Icon

Table 2 First-Order Parameters of Dual Field of View Afocal Telescope

Tables Icon

Table 3 Lens Data Prescription of the Narcissus Unoptimized Optics

Tables Icon

Table 4 RMS Polychromatic Wavefront Error versus Normalized Field Angle, Horizontal (HFOV), and Vertical Field of View (VFOV) in the First Quadrant for the Narcissus Unoptimized Optics at Narrow (NFOV) and Wide Field of View (WFOV) Modes

Tables Icon

Table 5 Paraxial Narcissus Values of the Narcissus Unoptimized Optics at NFOV and WFOV Modes

Tables Icon

Table 6 Diffraction Efficiency η m λ of a First Order Diffractive Surface on the First Lens Surface (which becomes Second-Surface Mirror for Reflection Path), Germanium, Reflected Path

Tables Icon

Table 7 Lens Data Prescription of the Narcissus Optimized Optics

Tables Icon

Table 8 RMS Polychromatic Wavefront Error versus Normalized Field Angle for Narcissus Optimized Optics at NFOV and WFOV Modes

Tables Icon

Table 9 Paraxial Narcissus Values of Narcissus Optimized Optics at NFOV and WFOV Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = 2 λ 1 λ 2 / ( λ 1 + λ 2 ) .

Metrics