Abstract

The metallic superlens is based on excitation and amplification of coupled surface plasmon polariton (SPP) modes through a metal slab. However, the narrow and too-high peaks of the SPP resonance modes in the transfer function can jeopardize imaging performance, such that high sidelobes occur in the image of isolated subwavelength patterns. We propose to design a metallic superlens by approaching the cutoff condition of the long-range SPP mode to flatten the transfer function and to improve imaging performance significantly.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons (Springer, 1988).
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127-2134(2005).
    [CrossRef] [PubMed]
  5. H. Qin, X. Li, and S. Shen, “Novel optical lithography using silver superlens,” Chin. Opt. Lett. 6, 149-151 (2008).
    [CrossRef]
  6. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens beyond the diffraction limit,” J. Opt. Soc. Am. B 23, 2383-2392 (2006).
    [CrossRef]
  7. Z. Shi, V. Kochergin, and F. Wang, “193 nm superlens imaging structure for 20 nm lithography node,” Opt. Express 17, 11309-11314 (2009).
    [CrossRef] [PubMed]
  8. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  9. M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16, 720-722 (1991).
    [CrossRef] [PubMed]
  10. F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  12. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15, 183-197 (2007).
    [CrossRef] [PubMed]
  13. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15, 183-197 (2007).
[CrossRef] [PubMed]

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

2006 (1)

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127-2134(2005).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Blaikie, R. J.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Durant, S.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Huang, Y.-D.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Katsidis, C. C.

Kochergin, V.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Li, X.

Liu, F.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

Liu, Z.

Mansuripur, M.

Melville, D. O. S.

Moloney, J. V.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Peng, J.-D.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

Qin, H.

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Rao, Y.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

Shen, S.

Shi, Z.

Siapkas, D. I.

Steele, J. M.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Wang, F.

Zakharian, A. R.

Zervas, M. N.

Zhang, W.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

Zhang, X.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24, 3462-3465 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534-537(2005).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of metallic superlens imaging.

Fig. 2
Fig. 2

Plots of the transmission | τ m | (solid curve) of a 25 nm thick silver slab, ε m = 3.16 + i 0.2 , on a polymethyl methacrylate substrate with ε 1 = 2.31 and d 1 = d 2 = 0 , and the fit to the Fourier spectrum of the SPP waveguide modes: (a)  symmetrical structure ε 3 = ε 1 with LRB (dashed curve) and SRB (dotted curve) modes and (b) asymmetrical structure ε 3 = 1 with SRB (dashed curve) and LRL (dotted curve) modes.

Fig. 3
Fig. 3

Plots of the amplitude of (a) transmission | τ m | and (b)  | TF | of a 30 nm thick silver superlens for ε 1 = ε 3 = Re ( ε m ) = 3.16 (dashed curves) and ε 1 = ε 3 = 1.96 (dotted curves), respectively. Thick curves, the superlens designed in a close-to-the-cutoff condition; thin solid curves: transmission through free space without a superlens.

Fig. 4
Fig. 4

Image intensity profile on a linear scale and at arbitrary units for a 40 nm two-slit pattern with 80 nm spacing, with the pattern shape plot with green lines for (a)  a superlens designed in the close-to-the-cutoff condition; (b), (c) a superlens out of the close-to-the-cutoff condition for ε 1 = ε 3 = 3.16 and ε 1 = ε 3 = Re ( ε m ) = 1.96 ; (d) free-space transmission without a superlens.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

τ n = exp ( i k z n d n ) = exp ( i ε n k 0 2 k x 2 )
τ m = t 0 t d exp ( i k z m d ) 1 + r 0 r d exp ( 2 i k z m d ) ,
ρ m = r 0 + r d exp ( 2 i k z m d ) 1 + r 0 r d exp ( 2 i k z m d ) ,
r 0 = ε m k z 1 ε 1 k z m ε m k z 1 + ε 1 k z m , t 0 = 2 ε m k z 1 ε m k z 1 + ε 1 k z m , r d = ε 3 k z m ε m k z 3 ε 3 k z m + ε m k z 3 , t d = 2 ε 3 k z m ε m k z 3 + ε 3 k z m ,
k z m = ε m k 0 2 k x 2 ,
β s p = k 0 ε m ε d / ( ε m + ε d ) k 0 ε d
H y ( x , z ) = { exp ( i S 1 z ) exp ( i β x ) , z 0 { a + exp ( i S m z ) + a exp ( i S m z ) } exp ( i β x ) , 0 z d b exp ( i S 3 ( z d ) ) exp ( i β x ) , z d ,
S i k z i = ± ε i k o 2 β 2 , with     i = 1 , m , 3
( S m ε 1 + S 1 ε m ) ( S m ε 3 + S 3 ε m ) ( S m ε 1 S 1 ε m ) ( S m ε 3 S 3 ε m ) exp ( i 2 S m d ) = 1 ,
r 0 r d exp ( i 2 S m d ) = 1 ,
( S m ε 1 + S 1 ε m ) ( S m ε 1 S 1 ε m ) exp ( i S m d ) = ± 1.
r 0 / r d = exp ( 2 i k z m d ) .
k z m = ε m k 0 2 β c 2

Metrics