Abstract

We analyzed and experimentally tested a metal–dielectric composite waveguide structure. After coating the surface of the metal layer in the Kretschmann attenuated total internal reflection configuration with a dielectric layer, we explain the coupling of incident light into the coated layer. After finding the dispersion relationships for the layered media including the metal–dielectric composite waveguide, we can determine a solution for its existance in a complex domain. By inscribing a periodic grating structure in the dielectric layer of the metal–dielectric composite waveguide, we experimentally verify the coupling of incident light on the metal–dielectric composite waveguide structure and propose its application for use as a wavelength-band selection filter.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
    [CrossRef]
  2. Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547-3553(2007).
    [CrossRef]
  3. S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
  6. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).
  7. S. Park, G. Lee, S. Song, C. Oh, and P. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870-1872 (2003).
    [CrossRef]
  8. Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).
  9. Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).
  10. S. Maruo, O. Nakamura, and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343-2346 (1997).
    [CrossRef]
  11. G. Wang, T. Sugiura, and S. Kawata, “Holography with surface-plasmon-coupled waveguide modes,” Appl. Opt. 40, 3649-3653 (2001).
    [CrossRef]
  12. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615(2006).
    [CrossRef]
  13. Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
    [CrossRef]
  14. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
    [CrossRef]
  15. K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005).
    [CrossRef]
  16. Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).
  17. Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.
  18. L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967).
    [CrossRef]
  19. T.-Y. Li, “On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method,” Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. 20, 865-871(1983).
  20. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818(1981).
    [CrossRef]
  21. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  22. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996).
    [CrossRef]
  23. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  24. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865-2875 (2001).
    [CrossRef]
  25. Q. Cao, P. Lalanne, and J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335-338 (2002).
    [CrossRef]
  26. H. Kim, I. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313-2327 (2007).
    [CrossRef]

2009 (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).

2008 (2)

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

2007 (2)

2006 (2)

X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615(2006).
[CrossRef]

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

2005 (3)

S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
[CrossRef]

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005).
[CrossRef]

2003 (1)

2002 (2)

Q. Cao, P. Lalanne, and J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335-338 (2002).
[CrossRef]

Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).

2001 (2)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).

1997 (1)

1996 (2)

1995 (1)

1983 (1)

T.-Y. Li, “On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method,” Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. 20, 865-871(1983).

1981 (1)

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

1967 (1)

L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
[CrossRef]

Atwater, H.

S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Cao, Q.

Chen, Z.

Choi, K.

Chung, S.

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

Delves, L.

L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967).
[CrossRef]

Du, J.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).

Gaylord, T.

Granet, G.

Grann, E.

Guizal, B.

Guo, X.

Guo, Y.

Han, S.

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

Haus, J.

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).

Hooper, I. R.

Hugonin, J. P.

Jung, J.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

Kawata, S.

Kim, H.

Kim, P.

Kim, S.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005).
[CrossRef]

Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.

Lalanne, P.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

H. Kim, I. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313-2327 (2007).
[CrossRef]

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005).
[CrossRef]

Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.

Lee, G.

Lee, I.

Li, T.-Y.

T.-Y. Li, “On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method,” Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. 20, 865-871(1983).

Lim, Y.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005).
[CrossRef]

Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.

Long, Y. L.

Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).

Lyness, J.

L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967).
[CrossRef]

Maier, S.

S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
[CrossRef]

Maruo, S.

Moharam, M.

Morris, G. M.

Nakamura, O.

Nelson, R.

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Oh, C.

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).

Park, S.

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

Pommet, D.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).

Sambles, J. R.

Silberstein, E.

Song, S.

Sugiura, T.

Wang, G.

Wu, Z.

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Yao, J.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).

Yung, E. K. N.

Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
[CrossRef]

Zhan, Q.

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).

Int. J. RF Microwave Comput.-Aided Eng. (1)

Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).

J. Appl. Phys. (1)

S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

Math. Comput. (1)

L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).

Opt. Lett. (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005).
[CrossRef]

Plasmonics (1)

Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).

Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. (1)

T.-Y. Li, “On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method,” Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. 20, 865-871(1983).

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the four-layer medium including the MDCW.

Fig. 2
Fig. 2

Results of the analytic solution of the dispersion relation given by the Kuhn algorithm.

Fig. 3
Fig. 3

Experimental results for reflectance under illumination by a second-harmonic Nd:YAG laser with a wavelength of 532 nm .

Fig. 4
Fig. 4

Schematic diagram of the decoupling grating in our MDCW.

Fig. 5
Fig. 5

SEM image of the outcoupler.

Fig. 6
Fig. 6

Numerical results for the decoupling grating: (a)  the diffracted electric field along the x axis of the waveguide mode and (b) that of the surface plasmon mode.

Fig. 7
Fig. 7

Experimental setup for measuring the filtering properties of the MDCW with the designed grating.

Fig. 8
Fig. 8

Reflectance of incident white light: the solid curve in each figure represents the reflectance of incident light for the grating-embedded region; the dashed curve indicates the reflectance of the MDCW region without the grating: (a) at the waveguide mode excitation angle and (b) at the surface plasmon resonance angle.

Fig. 9
Fig. 9

Measured spectra of the bandwidth of the MDCW with the inscribed grating at incident angles of (a)  39.5 ° and (b)  75.5 ° .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H y 0 = y ^ H y 0 exp ( j k z 0 z ) ,
H y 1 = y ^ { H y 1 + exp ( j k z 1 z ) + H y 1 exp [ j k z 1 ( z d 1 ) ] } ,
H y 2 = y ^ { H y 2 + exp [ j k z 2 ( z d 1 ) ] + H y 2 exp [ j k z 2 ( z d 2 d 1 ) ] } ,
H y f = y ^ H y f exp [ j k z f ( z d 2 d 1 ) ] .
k z 0 = k 0 ε 0 ( k x / k 0 ) 2 ,
k z 1 = k 0 ε 1 ( k x / k 0 ) 2 ,
k z 2 = k 0 ε 2 ( k x / k 0 ) 2 ,
k z f = k 0 ε f ( k x / k 0 ) 2 .
H y 0 H y 1 + H y 1 X 1 = 0 ,
k z 0 ε 0 H y 0 + k z 1 ε 1 H y 1 + k z 1 ε 1 H y 1 X 1 = 0.
H y 1 + X 1 + H y 1 H y 2 + H y 2 X 2 = 0 ,
k z 1 ε 1 H y 1 + X 1 + k z 1 ε 1 H y 1 + k z 2 ε 2 H y 2 + k z 2 ε 2 H y 2 X 2 = 0.
H y 2 + X 2 + H y 2 H y f = 0 ,
k z 2 ε 2 H y 2 + X 2 + k z 2 ε 2 H y 2 + k z f ε f H y f = 0.
( 1 1 X 1 0 0 0 A 0 A 1 A 1 X 1 0 0 0 0 X 1 1 1 X 2 0 0 A 1 X 1 A 1 A 2 A 2 X 2 0 0 0 0 X 2 1 1 0 0 0 A 2 X 2 A 2 A f ) ( H y 0 H y 1 + H y 1 H y 2 + H y 2 H y f ) = 0.
S r = 1 2 π j z r f ( z ) f ( z ) d z = i = 1 n ϕ i r , ( r = 0 , 1 , 2 , , n ) ,
S 1 = i = 1 n ϕ i 1 , S 2 = i = 1 n ϕ i 2 , S 3 = i = 1 n ϕ i 3 , , S n = i = 1 n ϕ i n .
{ σ 1 = ( ϕ 1 + ϕ 2 + + ϕ n ) σ 2 = ϕ 1 ϕ 2 + ϕ 2 ϕ 3 + + ϕ n 1 ϕ n σ n = ( 1 ) n ϕ 1 ϕ 2 ϕ n ,
{ S 1 + σ 1 = 0 S 2 + S 1 σ 1 + 2 σ 2 = 0 S n + S n 1 σ 1 + S n 2 σ 2 + S 1 σ n 1 + n σ n = 0 .
k MDCW = k 0 sin θ ± 2 π Λ q ( q = 0 , 1 , 2 , 3 , ) ,

Metrics