Abstract

We experimentally observe magnetic resonance in the visible frequency region from self-assembled silver nanocluster metamaterials. Extensive numerical modeling studies were conducted to find the optimal nanocluster dimensions. Self-assembly of silver nanoparticles coated with nanoscale silica coating was then performed on polymer templates fabricated by laser interference lithography. The nanoclusters supported magnetic resonance in the visible region, and the extracted effective permeability exhibited Lorentz-like resonance. The experimentally observed lowest value for the real part of permeability was 0.06. The nanocluster metamaterial represents a practical metamaterial architecture that is compatible with the scalable bottom-up manufacturing process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription