Abstract

We apply photon-trap spectroscopy, a generalized scheme of cavity ringdown spectroscopy, to infrared spectroscopy of molecular adsorbates on a solid substrate. The storage lifetime of light in a high-finesse Fabry–Perot cavity provides a high absorbance sensitivity for the substrate sample, which is placed exactly normal to the light beam in the cavity to minimize optical losses. Infrared spectra of the C–H stretching vibration of alkylsiloxane monolayer films on a silicon substrate are measured in three ways, namely by employing pulsed and continuous-wave lasers as well as by conventional Fourier transform infrared spectroscopy. The magnitude of optical absorption is shown to vary by the character of the interacting light used in the measurement, i.e., a standing wave versus a propagating wave.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kastler, “Atomes à l'intérieur d'un interféromètre Perot-Fabry,” Appl. Opt. 1, 17-24 (1962).
    [CrossRef]
  2. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
    [CrossRef]
  3. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
    [CrossRef] [PubMed]
  4. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
    [CrossRef]
  5. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
    [CrossRef]
  6. L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
    [CrossRef]
  7. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
    [CrossRef]
  8. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093-3096(1999).
    [CrossRef]
  9. A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449-1453(2000).
    [CrossRef]
  10. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
    [CrossRef]
  11. A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
    [CrossRef]
  12. M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
    [CrossRef] [PubMed]
  13. F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005).
    [CrossRef]
  14. R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
    [CrossRef]
  15. J. M. Herbelin and J. A. McKay, “Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method,” Appl. Opt. 20, 3341-3344 (1981).
    [CrossRef] [PubMed]
  16. G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167-5171 (2002).
    [CrossRef] [PubMed]
  17. R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
    [CrossRef]
  18. J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
    [CrossRef] [PubMed]
  19. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
    [CrossRef]
  20. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
    [CrossRef]
  21. S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40, 1570-1573 (2001).
    [CrossRef]
  22. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
    [CrossRef]
  23. H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
    [CrossRef]
  24. J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
    [CrossRef]
  25. A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005).
    [CrossRef]
  26. K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
    [CrossRef] [PubMed]
  27. R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984).
    [CrossRef]
  28. J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
    [CrossRef]
  29. S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
    [CrossRef]
  30. P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
    [CrossRef]
  31. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293-1295(1997).
    [CrossRef]
  32. R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
    [CrossRef]
  33. A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
    [CrossRef]
  34. R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
    [CrossRef]

2009 (1)

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

2007 (2)

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
[CrossRef] [PubMed]

2006 (1)

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

2005 (5)

F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005).
[CrossRef]

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005).
[CrossRef]

2004 (1)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

2003 (2)

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449-1453(2000).
[CrossRef]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

1999 (3)

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093-3096(1999).
[CrossRef]

R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

1997 (5)

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293-1295(1997).
[CrossRef]

1994 (1)

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

1992 (1)

J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
[CrossRef]

1991 (1)

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

1989 (1)

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
[CrossRef]

1988 (1)

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

1984 (2)

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984).
[CrossRef]

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

1982 (1)

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
[CrossRef]

1981 (1)

1962 (1)

Aarts, I. M. P.

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Alexander, A. J.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Allara, D. L.

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

Antonietti, J.-M.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Ariese, F.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

Ausserré, D.

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

Azouz, I. B.

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

Bargar, J. R.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Benattar, J. J.

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Black, V. M.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

Brzoska, J. B.

J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
[CrossRef]

Chang, J. P.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Deacon, D. A. G.

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Del Vitto, A.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Egashira, K.

K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
[CrossRef] [PubMed]

A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005).
[CrossRef]

Elliger, C. A.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
[CrossRef]

Engeln, R.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Everest, M. A.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

Gooijer, C.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

Haehlen, A. S.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

Hannon, T. E.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Haveman, G. A.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

Heiz, U.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Herbelin, J. M.

Hoang, J.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Hodges, J. T.

R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
[CrossRef]

Hoex, B.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
[CrossRef]

Jones, H.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Kastler, A.

Kessels, W. M. M.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Kliewer, C. J.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

Kondow, T.

K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
[CrossRef] [PubMed]

A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005).
[CrossRef]

Kramper, P.

Léger, L.

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

Li, F.

F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005).
[CrossRef]

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Lim, K. H.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Logunov, S. L.

Looney, J. P.

R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
[CrossRef]

MacPhail, R. A.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

Maoz, R.

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984).
[CrossRef]

Marcus, G. A.

McKay, J. A.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Mertens, H.

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

Michalski, M.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Mlynek, J.

Muir, R. N.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Neill, H. A.

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

O'Keefe, A.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Ostroumov, R.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Pacchioni, G.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Parikh, A. N.

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449-1453(2000).
[CrossRef]

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093-3096(1999).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Polman, A.

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

Rondelez, F.

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
[CrossRef]

Rösch, N.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

Sagiv, J.

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984).
[CrossRef]

Sawkar-Mathur, M.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

Schiller, S.

Schneider, K.

Schwettman, H. A.

Shahidzadeh, N.

J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
[CrossRef]

Shaw, A. M.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Silberzan, P.

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

Smets, A. H. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Snyder, R. G.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
[CrossRef]

Strauss, H. L.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
[CrossRef]

Tao, Y.-T.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
[CrossRef]

Terasaki, A.

K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
[CrossRef] [PubMed]

A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005).
[CrossRef]

Ubachs, W.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

Van, T. T.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Van de Sanden, M. C. M.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

van den Berg, E.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

van der Sneppen, L.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

van Zee, R. D.

R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

Wang, K. L.

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

Wasserman, S. R.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
[CrossRef]

Whitesides, G. M.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
[CrossRef]

Zare, R. N.

F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005).
[CrossRef]

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997).
[CrossRef] [PubMed]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007).
[CrossRef]

J. Chem. Phys. (3)

K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007).
[CrossRef] [PubMed]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

J. Colloid Interface Sci. (1)

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (3)

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984).
[CrossRef]

A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982).
[CrossRef]

J. Phys. Chem. B (3)

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006).
[CrossRef] [PubMed]

F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005).
[CrossRef]

Langmuir (2)

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989).
[CrossRef]

P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991).
[CrossRef]

Nature (1)

J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef] [PubMed]

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093-3096(1999).
[CrossRef]

Proc. SPIE (1)

R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for photon-trap spectroscopy: (a) cw mode operation. The light source is a single-mode cw OPO tunable in the mid-infrared region, which is based on PPLN. AOM, acousto-optic modulator; M1–M2, cavity mirrors; PZT, cylindrical piezoelectric transducers; PD, InSb photovoltaic infrared detector; S, solid-substrate sample. The optical phase of each cavity region is defined by ϕ i = 2 π n i d i / λ ( i = 1 3 ), where n i and d i are the refractive index and the physical length of each part, respectively, and λ is the wavelength of the incident light in a vacuum. (b) pulsed-mode operation. The light source is a pulsed mid-infrared OPO/OPA with KTP/KTA crystals as nonlinear optical media. The optical system is similar to that of (a) except for the PZTs.

Fig. 2
Fig. 2

Infrared spectra measured by cw-mode operation in the vicinity of the C–H stretching vibration of monolayer films of n- octadecylsiloxane on a silicon substrate. The data sets are shown for ϕ 2 = ( m + 1 / 2 ) π (solid circles) and m π (open circles), where m is an integer. The ordinate shows absorbance per round trip.

Fig. 3
Fig. 3

Infrared spectrum of the same monolayer films as in Fig. 2 obtained by pulsed-mode operation with a bandwidth of 2 cm 1 . The ordinate shows absorbance per single transit. Inset: the squared area is magnified. A background spectral modulation is superimposed on the spectrum due to the interference effect of the substrate itself.

Fig. 4
Fig. 4

Transmission FTIR spectrum of the same monolayer films as in Fig. 2 measured at a spectral resolution of 8 cm 1 at normal incidence. Interference fringes are negligibly small with this relatively broad spectral resolution. The ordinate shows absorbance per single transit.

Metrics