Abstract

We demonstrate single-molecule-level features using near-field optical microscopy on bacteriorhodopsin (bR), a membrane protein that functions as a light-driven proton pump. The photophysical properties of bR are utilized in this imaging technique, using a combination of photoexcitation sources, to accurately identify the active regions and quantify the optical parameters. The studies of bR monolayers are carried out on inert quartz substrates as well as active conducting polymer (polyaniline) substrates. The substrate also plays an important role in the photocycle quantum efficiencies. We speculate on mechanisms governing the higher near-field absorption strength of bR molecules.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Weiss, “Flourescence spectroscopy of single biomolecules,” Science 283, 1676-1683 (1999).
    [CrossRef] [PubMed]
  2. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999).
    [CrossRef] [PubMed]
  3. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
    [CrossRef] [PubMed]
  4. A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
    [CrossRef]
  5. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993).
    [CrossRef] [PubMed]
  6. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2921 (1999).
    [CrossRef]
  7. W. Stoeckenius, “Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps,” Protein Sci. 8, 447-459 (1999).
    [CrossRef] [PubMed]
  8. J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol. 66, 665-688 (2004).
    [CrossRef] [PubMed]
  9. R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
    [CrossRef] [PubMed]
  10. N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
    [CrossRef]
  11. H. W. Trissl, “Photoelectric measurements of purple membranes,” Photochem. Photobiol. 51, 793-818 (1990).
    [PubMed]
  12. L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
    [CrossRef]
  13. T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
    [CrossRef] [PubMed]
  14. F. T. Hong, “Interfacial photochemistry of retinal proteins,” Prog. Surf. Sci. 62, 1-237 (1999).
    [CrossRef]
  15. M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
    [CrossRef]
  16. L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
    [CrossRef] [PubMed]
  17. C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
    [CrossRef] [PubMed]
  18. M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
    [CrossRef] [PubMed]
  19. B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
    [CrossRef] [PubMed]
  20. J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
    [CrossRef]
  21. T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
    [CrossRef]
  22. J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
    [CrossRef]
  23. I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
    [CrossRef] [PubMed]
  24. D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
    [CrossRef] [PubMed]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  26. H. Kuzmany, Solid-State Spectroscopy: an Introduction (Springer-Verlag, 1998).
  27. H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
    [CrossRef] [PubMed]
  28. A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
    [CrossRef] [PubMed]
  29. S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989).
    [CrossRef] [PubMed]
  30. J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
    [CrossRef]
  31. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994).
    [CrossRef]
  32. A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000).
    [CrossRef]
  33. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
    [CrossRef]
  34. L. Zimanyi, “Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: a critical evaluation using realistic simulated data,” J. Phys. Chem. B 108, 4199-4209 (2004).
    [CrossRef]
  35. K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
    [CrossRef] [PubMed]
  36. R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
    [CrossRef] [PubMed]
  37. A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
    [CrossRef]
  38. N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008).
    [CrossRef] [PubMed]

2008 (1)

N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008).
[CrossRef] [PubMed]

2007 (1)

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

2006 (1)

M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
[CrossRef] [PubMed]

2005 (1)

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

2004 (2)

L. Zimanyi, “Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: a critical evaluation using realistic simulated data,” J. Phys. Chem. B 108, 4199-4209 (2004).
[CrossRef]

J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol. 66, 665-688 (2004).
[CrossRef] [PubMed]

2003 (3)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
[CrossRef] [PubMed]

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

2002 (1)

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

2000 (4)

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000).
[CrossRef]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

1999 (9)

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

S. Weiss, “Flourescence spectroscopy of single biomolecules,” Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999).
[CrossRef] [PubMed]

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2921 (1999).
[CrossRef]

W. Stoeckenius, “Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps,” Protein Sci. 8, 447-459 (1999).
[CrossRef] [PubMed]

F. T. Hong, “Interfacial photochemistry of retinal proteins,” Prog. Surf. Sci. 62, 1-237 (1999).
[CrossRef]

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

1997 (3)

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
[CrossRef] [PubMed]

J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
[CrossRef]

1994 (2)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

1993 (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993).
[CrossRef] [PubMed]

1990 (3)

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

H. W. Trissl, “Photoelectric measurements of purple membranes,” Photochem. Photobiol. 51, 793-818 (1990).
[PubMed]

R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
[CrossRef] [PubMed]

1989 (1)

S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989).
[CrossRef] [PubMed]

1987 (1)

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

1984 (1)

L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
[CrossRef]

1983 (1)

K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
[CrossRef] [PubMed]

Abidian, M. R.

M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
[CrossRef] [PubMed]

Arun, N.

N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008).
[CrossRef] [PubMed]

Bainier, C.

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Balashov, S. P.

R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
[CrossRef] [PubMed]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Bazan, G. C.

B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993).
[CrossRef] [PubMed]

Bigelow, R. W.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Birge, R. R.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

Buldt, G.

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

Cahen, D.

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

Cartailler, J.

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

Cheung, J. H.

J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
[CrossRef]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993).
[CrossRef] [PubMed]

Claus, R. O.

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Cooper, K.

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

Courjon, D.

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Drachev, L. A.

L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
[CrossRef]

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2921 (1999).
[CrossRef]

Dyukova, T.

T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
[CrossRef] [PubMed]

Ebrey, T. G.

R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
[CrossRef] [PubMed]

K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
[CrossRef] [PubMed]

Engel, A.

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

Epstein, A. J.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Fernández, R.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Friedman, N.

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

Fuchs, H.

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

Fyvie, S.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Garcia-Parajo, M. F.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

Gaylord, B. S.

B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
[CrossRef] [PubMed]

Gillespie, N. B.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Ginder, J. M.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Gomez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Gomez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Govindjee, R.

R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
[CrossRef] [PubMed]

K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
[CrossRef] [PubMed]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Hampp, N.

A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000).
[CrossRef]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

He, J.

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

He, T.

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Heeger, A. J.

B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
[CrossRef] [PubMed]

Heyn, M. P.

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

Hillebrecht, J.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Hong, F. T.

F. T. Hong, “Interfacial photochemistry of retinal proteins,” Prog. Surf. Sci. 62, 1-237 (1999).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Huang, W.-S.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Janshoff, A.

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

Jiang, L.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Jordan, K.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Kaulen, A. D.

L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
[CrossRef]

Kim, D-H.

M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
[CrossRef] [PubMed]

Kuiper, L.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

Kumar, J.

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

Kuzmany, H.

H. Kuzmany, Solid-State Spectroscopy: an Introduction (Springer-Verlag, 1998).

Langer, R.

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

Lanyi, J. K.

J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol. 66, 665-688 (2004).
[CrossRef] [PubMed]

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

Lemmetyinen, H.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Li, B.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Li, L.

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

Li, M.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Li, Q.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Lin, S. W.

S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989).
[CrossRef] [PubMed]

Luecke, H.

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

MacDiarmid, A. G.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Marcy, D. L.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Martin, D. C.

M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
[CrossRef] [PubMed]

Mathies, R. A.

S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989).
[CrossRef] [PubMed]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Moerner, W. E.

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999).
[CrossRef] [PubMed]

Muller, D. J.

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

Muller, S. A.

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

Narayan, K. S.

N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008).
[CrossRef] [PubMed]

Neitzert, M.

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Oberdorfer, Y.

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

Ohno, K.

K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
[CrossRef] [PubMed]

Orrit, M.

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999).
[CrossRef] [PubMed]

Ramos, L.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Ren, L.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Richter, A. F.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Richter, H.

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

Robertson, B.

T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
[CrossRef] [PubMed]

Rubner, M. F.

J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
[CrossRef]

Samuelson, L.

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

Sass, H-J.

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

Schmidt, C. E.

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

Schobert, B.

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

Seitz, A.

A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000).
[CrossRef]

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Shastri, V. R.

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

Sheves, M.

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

Skulachev, V. P.

L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
[CrossRef]

Stockton, W. B.

J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
[CrossRef]

Stoeckenius, W.

W. Stoeckenius, “Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps,” Protein Sci. 8, 447-459 (1999).
[CrossRef] [PubMed]

Stuart, J. A.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Tanner, D. B.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Tkachenko, N.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Tripathy, S. K.

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

Trissl, H. W.

H. W. Trissl, “Photoelectric measurements of purple membranes,” Photochem. Photobiol. 51, 793-818 (1990).
[PubMed]

Tussila, T.

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Ulrich, A. S.

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

Vacanti, J. P.

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

Van Hulst, N. F.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

Veerman, J. A.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

Wallat, I.

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

Watts, A.

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

Weetall, H.

T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
[CrossRef] [PubMed]

Weiss, S.

S. Weiss, “Flourescence spectroscopy of single biomolecules,” Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

Wise, K. J.

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

Woo, H. S.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Zeng, T.

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

Zimanyi, L.

L. Zimanyi, “Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: a critical evaluation using realistic simulated data,” J. Phys. Chem. B 108, 4199-4209 (2004).
[CrossRef]

Zuo, F.

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Adv. Mater. (3)

J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999).
[CrossRef]

T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005).
[CrossRef]

M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000).
[CrossRef]

Annu. Rev. Physiol. (1)

J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol. 66, 665-688 (2004).
[CrossRef] [PubMed]

Biochemistry (1)

A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

Biophys. J. (4)

L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003).
[CrossRef] [PubMed]

S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989).
[CrossRef] [PubMed]

K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983).
[CrossRef] [PubMed]

R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990).
[CrossRef] [PubMed]

BioSystems (1)

T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997).
[CrossRef] [PubMed]

Chem. Rev. (2)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2921 (1999).
[CrossRef]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

FEBS Lett. (1)

L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003).
[CrossRef] [PubMed]

J. Microsc. (1)

J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999).
[CrossRef]

J. Mol. Biol. (2)

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999).
[CrossRef] [PubMed]

D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000).
[CrossRef]

L. Zimanyi, “Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: a critical evaluation using realistic simulated data,” J. Phys. Chem. B 108, 4199-4209 (2004).
[CrossRef]

N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002).
[CrossRef]

N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008).
[CrossRef] [PubMed]

Langmuir (1)

M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000).
[CrossRef]

Macromolecules (1)

J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997).
[CrossRef]

Photochem. Photobiol. (1)

H. W. Trissl, “Photoelectric measurements of purple membranes,” Photochem. Photobiol. 51, 793-818 (1990).
[PubMed]

Proc. Natl. Acad. Sci. (1)

C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

F. T. Hong, “Interfacial photochemistry of retinal proteins,” Prog. Surf. Sci. 62, 1-237 (1999).
[CrossRef]

Protein Sci. (1)

W. Stoeckenius, “Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps,” Protein Sci. 8, 447-459 (1999).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef] [PubMed]

Science (4)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993).
[CrossRef] [PubMed]

S. Weiss, “Flourescence spectroscopy of single biomolecules,” Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Synth. Met. (1)

A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987).
[CrossRef]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

H. Kuzmany, Solid-State Spectroscopy: an Introduction (Springer-Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectra of bR on quartz and on polyaniline.

Fig. 2
Fig. 2

Schematic of the SNOM experiment. An additional laser coupled through the objective was used as the pump source for the PI-SNOM measurement. Inset: three-state model of bR kinetics.

Fig. 3
Fig. 3

(a) AFM image, (b) transmission-SNOM image, and (c) pump-induced transmission-SNOM image of a monolayer of bR patch with λ = 532 nm through the tip and the pump beam at λ = 405 nm . The scale is equalized for (b) and (c). Line profiles of the corresponding (d) AFM image, (e) SNOM image and (f) pump-induced transmission-SNOM image. Scan area 1 μm × 1 μm .

Fig. 4
Fig. 4

(a) Three-dimensional view and (b) x, z cross section of an optical fiber tip with the associated electric-field lines and the orientation of the transition-dipole moment of the retinal chromophore.

Fig. 5
Fig. 5

Change in transmission ( Δ I = I 0 I ) measured as a function of the thickness of bR patch for SNOM and PI-SNOM.

Fig. 6
Fig. 6

(a), (b) AFM image in constant gap mode and constant height mode. (c), (d) Transmission-SNOM image in constant gap mode and constant height mode. The scale is equalized for (a) and (b) and for (c) and (d). Scan area 1 μm × 1 μm .

Fig. 7
Fig. 7

(a) AFM image, (b) transmission-SNOM image, and (c) pump-induced transmission-SNOM image of a bR patch with λ = 532 nm through the tip and the pump beam at λ max = 570 nm . The scale is equalized for (b) and (c). Scan area 1 μm × 1 μm .

Fig. 8
Fig. 8

(a) AFM image, (b) transmission-SNOM image, and (c) pump-induced transmission-SNOM image of a monolayer of bR patch with λ = 405 nm through the tip and the pump beam at λ = 532 nm . The scale is equalized for (b) and (c). Scan area 1 μm × 1 μm .

Fig. 9
Fig. 9

(a) AFM image, (b) transmission-SNOM image, and (c) pump-induced transmission-SNOM image of a patch of bR with the corresponding conducting polymer layer underneath ( λ = 532 nm through the tip and λ = 405 nm as the pump). The scale is equalized for (b) and (c). Line profiles of the corresponding (d) AFM image, (e) SNOM image, (f) and pump-induced transmission-SNOM image. Scan area 1.5 μm × 1.5 μm .

Tables (1)

Tables Icon

Table 1 Effect of Scanning Modes and Pumps on the Measured Transmission

Metrics