Abstract

Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25μm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
    [CrossRef]
  2. T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
    [CrossRef]
  3. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
    [CrossRef]
  4. M. J. Persky and M. Szczesniak, “Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating,” Appl. Opt. 47, 1389-1396 (2008).
    [CrossRef] [PubMed]
  5. M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
    [CrossRef]
  6. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773-1775 (2005).
    [CrossRef] [PubMed]
  7. E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
    [CrossRef]
  8. H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
    [CrossRef]
  9. F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
    [CrossRef]
  10. . S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
    [CrossRef]

2008

2007

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

2006

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
[CrossRef]

2005

2003

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

2001

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

1998

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

1984

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

1981

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Aziz, M. J.

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
[CrossRef]

Baert, C.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Carey, J. E.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773-1775 (2005).
[CrossRef] [PubMed]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

Caymax, M.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Cros, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Crouch, C. H.

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

Ennen, H.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

Fiorini, P.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Friend, C. M.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

Gavarri, J. R.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Grimmeiss, H. G.

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Grossmann, G.

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

Guinneton, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

Holm, C.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Janzen, E.

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Kim, T. G.

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
[CrossRef]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

Mazur, E.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773-1775 (2005).
[CrossRef] [PubMed]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

Persky, M. J.

Sauques, L.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Schirmer, O.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Schneider, J.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Sedky, S.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Sheehy, M. A.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

Shen, M.

Sirtl, E.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Stedman, R.

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

Szczesniak, M.

Tull, B. R.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

Valmalette, J. C.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Verbist, A.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Wagner, P.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Warrender, J. M.

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
[CrossRef]

Worner, R.

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673-1675 (1998).
[CrossRef]

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902 (2006).
[CrossRef]

J. Appl. Phys.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626-2629 (2003).
[CrossRef]

J. Phys. Chem. Solids

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium oxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62, 1229-1238 (2001).
[CrossRef]

Mater. Sci. Eng. B

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137, 289-294 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. B

E. Janzen, R. Stedman, G. Grossmann, and H. G. Grimmeiss, “High-resolution studies of sulfur- and selenium-related donor centers in silicon,” Phys. Rev. B 29, 1907-1918 (1984).
[CrossRef]

H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, and P. Wagner, “Tellurium donors in silicon,” Phys. Rev. B 24, 4571-4586 (1981).
[CrossRef]

Sens. Actuators A, Phys.

. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, Phys. 66, 193-199 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electron micrograph of sulfur-doped black silicon (a) before measurement and (b) after measurement with the source at 973 K .

Fig. 2
Fig. 2

Emissivity versus wavelength given different blackbody source temperatures.

Fig. 3
Fig. 3

Emissivity versus wavelength of (a) a tellurium-doped sample and (b) a selenium-doped sample using different blackbody temperatures.

Fig. 4
Fig. 4

(a) Blackbody emittance versus wavelength and (b) sample emissivity versus wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M BB ( λ , T ) = 2 h c 2 λ 5 ( e h c / λ k T 1 ) 0 2 π 0 π / 2 ε h , d ( λ , θ , ϕ ) cos θ sin θ d θ d ϕ ,
ε h , d ( λ , θ , ϕ ) = 1 ( R h , d ( λ , θ , ϕ ) + T ( λ , θ = 0 ° , ϕ ) ) ,
ε h , Total = λ 2 λ 1 M Sample BB ( λ , T ) d λ / λ 1 λ 2 M B B ( λ , T ) d λ .

Metrics