Abstract

A nonsequential ray tracing technique is used to simulate the narcissus phenomenon in infrared (IR) imaging cameras having cooled detectors. Imaging cameras based on two-dimensional focal plane array detectors are simulated. In a companion article, line-scan imaging cameras based on one-dimensional linear detector arrays are simulated. Diffractive phase surfaces commonly used in modern IR cameras are modeled including multiple diffraction orders in the narcissus retroreflection path to correctly simulate the stray light return signal. Practical optical design examples along with their performance curves are given to elucidate the modeling technique. Optical methods to minimize the narcissus return signal are thoroughly explained, and modeling results are presented. It is shown that the nonsequential ray tracing technique is an effective method to accurately calculate the narcissus return signal in complex IR cameras having diffractive surfaces.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Howard and I. R. Abel, “Narcissus: reflections on retroreflections in thermal imaging systems,” Appl. Opt. 21, 3393-3397 (1982).
    [CrossRef] [PubMed]
  2. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).
  3. M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
    [CrossRef]
  4. K. Lu and S. J. Dobson, “Accurate calculation of Narcissus signatures by using finite ray tracing,” Appl. Opt. 36, 6393-6398 (1997).
    [CrossRef]
  5. Optical Research Associates, Code V User Manual, 3280 East Foothill Boulevard, Suite 300 Pasadena, CA 91107-3103, USA.
  6. J. L. Rayces and L. Lebich, “Exact ray tracing computation of narcissus equivalent temperature difference in scanning thermal imagers,” Proc. SPIE 1752, 325-332 (1992).
    [CrossRef]
  7. T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
    [CrossRef]
  8. J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
    [CrossRef]
  9. E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.
  10. L. M. Scherr and H. J. Orlando, “Narcissus considerations in optical design for infrared starring arrays,” Proc. SPIE 2864, 442-452 (1996).
    [CrossRef]
  11. J. B. Cohen, “Narcissus of diffractive optical surfaces,” Proc. SPIE 2426, 380-385 (1995).
    [CrossRef]
  12. Zemax Development Corporation, Zemax User Manual, 3001 112th Avenue NE, Suite 202, Bellevue, WA 98004-8017 USA, 2009.
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  14. J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
    [CrossRef]

2003 (1)

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

2002 (1)

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

1999 (1)

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

1997 (1)

1996 (2)

L. M. Scherr and H. J. Orlando, “Narcissus considerations in optical design for infrared starring arrays,” Proc. SPIE 2864, 442-452 (1996).
[CrossRef]

T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
[CrossRef]

1995 (1)

J. B. Cohen, “Narcissus of diffractive optical surfaces,” Proc. SPIE 2426, 380-385 (1995).
[CrossRef]

1992 (1)

J. L. Rayces and L. Lebich, “Exact ray tracing computation of narcissus equivalent temperature difference in scanning thermal imagers,” Proc. SPIE 1752, 325-332 (1992).
[CrossRef]

1982 (1)

Abel, I. R.

Akiyama, T.

T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
[CrossRef]

Akram, M. N.

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

Arasa, J.

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

Cohen, J. B.

J. B. Cohen, “Narcissus of diffractive optical surfaces,” Proc. SPIE 2426, 380-385 (1995).
[CrossRef]

Diaz, J. A.

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

Dobson, S. J.

Ford, E.

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Hasenauer, D.

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Howard, J. W.

Kobayashi, M.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Kudo, J.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Lebich, L.

J. L. Rayces and L. Lebich, “Exact ray tracing computation of narcissus equivalent temperature difference in scanning thermal imagers,” Proc. SPIE 1752, 325-332 (1992).
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).

Lu, K.

Okamura, T.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Orlando, H. J.

L. M. Scherr and H. J. Orlando, “Narcissus considerations in optical design for infrared starring arrays,” Proc. SPIE 2864, 442-452 (1996).
[CrossRef]

Pizarro, C.

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

Rayces, J. L.

J. L. Rayces and L. Lebich, “Exact ray tracing computation of narcissus equivalent temperature difference in scanning thermal imagers,” Proc. SPIE 1752, 325-332 (1992).
[CrossRef]

Scherr, L. M.

L. M. Scherr and H. J. Orlando, “Narcissus considerations in optical design for infrared starring arrays,” Proc. SPIE 2864, 442-452 (1996).
[CrossRef]

Tamagawa, Y.

T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
[CrossRef]

Tanikawa, K. A.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Tomas, N.

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

Wada, H.

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

Yanagisawa, T.

T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
[CrossRef]

Appl. Opt. (2)

Opt. Eng. (2)

J. Kudo, H. Wada, T. Okamura, M. Kobayashi, and K. A. Tanikawa, “Diffractive lenses in the 8 to 10 μm forward-looking infrared systems,” Opt. Eng. 41, 1787-1791 (2002).
[CrossRef]

M. N. Akram, “Design of a multiple field-of-view optical system for 3-5 μm infrared focal-plane arrays,” Opt. Eng. 42, 1704-1714 (2003).
[CrossRef]

Proc. SPIE (1)

J. L. Rayces and L. Lebich, “Exact ray tracing computation of narcissus equivalent temperature difference in scanning thermal imagers,” Proc. SPIE 1752, 325-332 (1992).
[CrossRef]

Proc. SPIE (4)

T. Akiyama, Y. Tamagawa, and T. Yanagisawa, “Simulation of visible/infrared sensor images,” Proc. SPIE 2744, 61-67(1996).
[CrossRef]

J. Arasa, C. Pizarro, N. Tomas, and J. A. Diaz, “Contributions of ghost and narcissus effects in MTF calculations,” Proc. SPIE 3737, 118-124 (1999).
[CrossRef]

L. M. Scherr and H. J. Orlando, “Narcissus considerations in optical design for infrared starring arrays,” Proc. SPIE 2864, 442-452 (1996).
[CrossRef]

J. B. Cohen, “Narcissus of diffractive optical surfaces,” Proc. SPIE 2426, 380-385 (1995).
[CrossRef]

Other (5)

Zemax Development Corporation, Zemax User Manual, 3001 112th Avenue NE, Suite 202, Bellevue, WA 98004-8017 USA, 2009.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

E. Ford and D. Hasenauer, “Narcissus in current generation FLIR systems,” in Critical Reviews of Optical Science and Technology (SPIE, 1991), Vol. CR38, pp. 95-119.

Optical Research Associates, Code V User Manual, 3280 East Foothill Boulevard, Suite 300 Pasadena, CA 91107-3103, USA.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Preliminary optics design for the 3 5 μm waveband.

Fig. 2
Fig. 2

MTF calculated using sequential ray tracing.

Fig. 3
Fig. 3

PSF cross section calculated using nonsequential and sequential ray tracing.

Fig. 4
Fig. 4

Double-pass optics model in the sequential mode.

Fig. 5
Fig. 5

PSF cross section calculated using nonsequential and sequential ray tracing in a double-pass optics model.

Fig. 6
Fig. 6

PSF cross section calculated using the main and multiple diffraction orders.

Fig. 7
Fig. 7

Multiple diffraction orders ray tracing from a reflective diffractive surface.

Fig. 8
Fig. 8

(a) Forward ray trace path and (b) retroreflected ray path from surface 2 from the center detector pixel for narcissus simulation.

Fig. 9
Fig. 9

Narcissus contribution from each surface for the unoptimized optics.

Fig. 10
Fig. 10

Effective narcissus signature for the unoptimized optics at two different eyepiece positions and at two different camera housing temperatures.

Fig. 11
Fig. 11

Narcissus optimized optics design for the 3 5 μm waveband.

Fig. 12
Fig. 12

MTF calculated using sequential ray tracing.

Fig. 13
Fig. 13

Narcissus contribution from each surface for the optimized optics.

Fig. 14
Fig. 14

Effective narcissus signature for the optimized optics at two different eyepiece positions and at two different camera housing temperatures.

Tables (8)

Tables Icon

Table 1 First-Order Parameters for the 3 5 μm Optics

Tables Icon

Table 2 Lens Data Prescription of the Unoptimized Optics

Tables Icon

Table 3 Paraxial Narcissus Values of the Unoptimized Optics

Tables Icon

Table 4 Diffraction Efficiency ϵ m λ for the Transmission Path

Tables Icon

Table 5 Diffraction Efficiency η m λ of a First-Order Diffractive Surface on the Second Lens Surface (which becomes First-Surface Mirror for Reflection Path), Silicon, Reflected Path

Tables Icon

Table 6 Diffraction Efficiency η m λ of a First-Order Diffractive Surface on the First Lens Surface (which becomes Second-Surface Mirror for Reflection Path), Silicon, Reflected Path

Tables Icon

Table 7 Lens Data Prescription of the Narcissus Optimized System

Tables Icon

Table 8 Paraxial Narcissus Values for the Narcissus Optimized System

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Φ = M i = 1 N d 2 i ρ 2 i ,
ϵ m = sinc 2 ( α m ) ,     α = λ 0 λ ( n ( λ ) 1 n ( λ o ) 1 ) λ 0 λ ,
ϵ 1 = sinc 2 ( λ 0 λ 1 ) .
λ 0 = 2 λ 1 λ 2 λ 1 + λ 2 .
d = λ 0 n 1 .
d = { λ 0 2 , front-surface mirror λ 0 2 n , back-surface mirror .
m max = { 2 n n 1 , first lens surface 2 n 1 , second lens surface .
η m λ = sinc 2 ( m max λ 0 λ m ) .
NITD i j = λ 1 λ 2 [ N ( λ , T H ) N ( λ , T D ) ] R d ( λ ) d λ λ 1 λ 2 N ( λ , T M S ) T R d ( λ ) d λ t j 2 t o R j σ i j ,
N ( λ , T ) = 2 h c 2 λ 5 ( e h c λ k T 1 ) 1 Watt / ( m 2 · str · m ) ,
σ i j = m M .

Metrics