Abstract

An important effect of the frequency chirp of the optical transmitter in radio over multimode fiber links is put into evidence experimentally and modeled theoretically for the first time, to our knowledge. This effect can have an important impact in short-range connections, where, although intermodal dispersion does not generally cause unacceptable limitations to the transmittable bandwidth, the presence of modal noise must be accurately kept under control, since it determines undesired real-time fluctuations of the link.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Carlsson, A. Larsson, and A. Alping, “RF transmission over multimode fibers using VCSELs--Comparing standard and high bandwidth multimode fibers,” J. Lightwave Technol. 22, 1694-1700 (2004).
    [CrossRef]
  2. M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.
  3. Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
    [CrossRef]
  4. M. Webster, L. Raddatz, I. H. White, and D. G. Cunningham, “A statistical analysis of conditioned launch for gigabit ethernet links using multimode fiber,” J. Lightwave Technol. 17, 1532-1541 (1999).
    [CrossRef]
  5. M. Duser and P. Bayvel, “2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique,” Electron. Lett. 36, 57-58 (2000).
    [CrossRef]
  6. R. E. Epworth, “Modal noise--causes and cures,” Laser Focus 17, 109-115 (1981).
  7. T. Kanada, “Evaluation of modal noise in multimode fiber-optic systems,” J. Lightwave Technol. 2, 11-18 (1984).
    [CrossRef]
  8. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3, 7-12 (1985).
    [CrossRef]
  9. E. G. Rawson, J. W. Godman, and R. E. Norton, “Frequency dependence of modal noise in multimode optical fibers,” J. Opt. Soc. Am. 70, 968-976 (1980).
    [CrossRef]
  10. A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” IEEE J. Sel. Areas Commun. 4, 1515-1522 (1986).
    [CrossRef]
  11. G. C. Papen and G. M. Murphy, “Modal noise in multimode fibers under restricted launch conditions,” J. Lightwave Technol. 17, 817-822 (1999).
    [CrossRef]
  12. G. Tartarini and P. Faccin, “Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation,” Microw. Opt. Technol. Lett. 46, 114-117 (2005).
    [CrossRef]
  13. I. Gasulla and J. Capmany, “Modal noise impact in radio over fiber multimode fiber links,” Opt. Express 16, 121-126 (2008).
    [CrossRef] [PubMed]
  14. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems (Academic, 2002).

2009

Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
[CrossRef]

2008

2005

G. Tartarini and P. Faccin, “Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation,” Microw. Opt. Technol. Lett. 46, 114-117 (2005).
[CrossRef]

2004

2000

M. Duser and P. Bayvel, “2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique,” Electron. Lett. 36, 57-58 (2000).
[CrossRef]

1999

1986

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” IEEE J. Sel. Areas Commun. 4, 1515-1522 (1986).
[CrossRef]

1985

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3, 7-12 (1985).
[CrossRef]

1984

T. Kanada, “Evaluation of modal noise in multimode fiber-optic systems,” J. Lightwave Technol. 2, 11-18 (1984).
[CrossRef]

1981

R. E. Epworth, “Modal noise--causes and cures,” Laser Focus 17, 109-115 (1981).

1980

Alping, A.

Bayvel, P.

M. Duser and P. Bayvel, “2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique,” Electron. Lett. 36, 57-58 (2000).
[CrossRef]

Bertholds, A.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3, 7-12 (1985).
[CrossRef]

Capmany, J.

Carlsson, C.

Cunningham, D. G.

Dandliker, R.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3, 7-12 (1985).
[CrossRef]

Duser, M.

M. Duser and P. Bayvel, “2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique,” Electron. Lett. 36, 57-58 (2000).
[CrossRef]

Epworth, R. E.

R. E. Epworth, “Modal noise--causes and cures,” Laser Focus 17, 109-115 (1981).

Faccin, P.

G. Tartarini and P. Faccin, “Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation,” Microw. Opt. Technol. Lett. 46, 114-117 (2005).
[CrossRef]

Gasulla, I.

Godman, J. W.

Guo, Y.-X.

M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.

Kaminow, I. P.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems (Academic, 2002).

Kanada, T.

T. Kanada, “Evaluation of modal noise in multimode fiber-optic systems,” J. Lightwave Technol. 2, 11-18 (1984).
[CrossRef]

Koonen, A. M. J.

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” IEEE J. Sel. Areas Commun. 4, 1515-1522 (1986).
[CrossRef]

Larsson, A.

Li, T.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems (Academic, 2002).

Ma, Y.

Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
[CrossRef]

Maystre, F.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3, 7-12 (1985).
[CrossRef]

Murphy, G. M.

Norton, R. E.

Ong, L. C.

M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.

Papen, G. C.

Pham, V. H.

M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.

Raddatz, L.

Rawson, E. G.

Shieh, W.

Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
[CrossRef]

Tang, Y.

Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
[CrossRef]

Tartarini, G.

G. Tartarini and P. Faccin, “Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation,” Microw. Opt. Technol. Lett. 46, 114-117 (2005).
[CrossRef]

Webster, M.

White, I. H.

Willner, A. E.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems (Academic, 2002).

Yee, M.-L.

M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.

Electron. Lett.

Y. Ma, Y. Tang, and W. Shieh, “107 Gbit/s transmission over multimode fibre with coherent optical OFDM using centre launching technique,” Electron. Lett. 45, 848-849 (2009).
[CrossRef]

M. Duser and P. Bayvel, “2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique,” Electron. Lett. 36, 57-58 (2000).
[CrossRef]

IEEE J. Sel. Areas Commun.

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” IEEE J. Sel. Areas Commun. 4, 1515-1522 (1986).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

Laser Focus

R. E. Epworth, “Modal noise--causes and cures,” Laser Focus 17, 109-115 (1981).

Microw. Opt. Technol. Lett.

G. Tartarini and P. Faccin, “Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation,” Microw. Opt. Technol. Lett. 46, 114-117 (2005).
[CrossRef]

Opt. Express

Other

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems (Academic, 2002).

M.-L. Yee, Y.-X. Guo, V. H. Pham, and L. C. Ong, “WiMedia ultra-wide band transmission in radio over fiber using multimode fiber,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2007), pp. 335-336.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated behavior of the time fluctuations due to modal noise on the amplitude of the received photocurrent (DC term, black curve; RF term, f RF = 1 GHz , gray curve) for the RoMMF system considered and of the optical phase φ m ( t , z = L ) of a generic propagating mode (dashed curve). The RoF TX used is assumed to operate in the C band and to exhibit K f = 220 MHz / mA .

Fig. 2
Fig. 2

Experimental setup. See text for details.

Fig. 3
Fig. 3

Behavior of experimentally measured time fluctuations due to modal noise on the amplitudes of the received photocurrent (DC term, black curve; RF term, f RF = 1 GHz , gray curve) for the RoMMF system considered and of the environmental temperature (dashed curve). The RoF TX used operates in the third optical window and exhibits K f = 220 MHz / mA .

Fig. 4
Fig. 4

Behavior of experimentally measured time fluctuations due to modal noise on the amplitudes of the received photocurrent (DC term, black curve; RF term, f RF = 1 GHz , gray curve) for the RoMMF system considered and of the environmental temperature (dashed curve). The RoF TX used operates in the C band and exhibits K f = 30 MHz / mA .

Fig. 5
Fig. 5

Behavior of experimentally measured time fluctuations due to modal noise on the amplitudes of the received photocurrent (DC term, black curve; RF term, f RF = 1 GHz , gray curve) for the RoMMF system considered and of the environmental temperature (dashed curve). The RoF TX used operates in C band and is followed by a MZM, whose frequency chirp can be estimated to correspond to a value K f lower than a few MHz / mA .

Fig. 6
Fig. 6

Behavior of the measured values of Δ I RF NORM with respect to Δ I DC NORM for the RoMMF system considered. The modulating frequency is f RF = 1 GHz . Black curve, MZM-based RoF TX; solid gray curve, directly modulated RoF TX with K f = 30 MHz / mA ; dashed gray curve, directly modulated RoF TX with K f = 220 MHz / mA . All RoF TXs operate in C band.

Fig. 7
Fig. 7

Same as Fig. 6, but coming from simulated results.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 1 + m I cos ( 2 π f c t ) · exp [ j ( 2 π f 0 t + K f I RF f c sin ( 2 π f c t ) ) ] ,
E in ( t , z = 0 ) = m = 1 N M A m e m ( x , y ) 1 + m I cos ( 2 π f c t ) · exp [ j ( 2 π f 0 t + K f I RF f c sin ( 2 π f c t ) ) ] ,
E out ( t , z = L ) = m = 1 N M A m e m ( x , y ) · 1 + m I cos ( 2 π f c ( t τ m L ) ) · exp [ j ( 2 π f 0 t β m L + ϕ m ( t , L ) + K f I RF f c sin ( 2 π f c ( t τ m L ) ) ) ] ,
i out ( t , L ) = S PD | E out ( t , z = L ) | 2 d S = m = 1 N M n = 1 N M A m A n · S PD e m ( x , y ) · e m * ( x , y ) d S · 1 + m I cos ( 2 π f c ( t τ m L ) ) · 1 + m I cos ( 2 π f c ( t τ n L ) ) · exp [ j ( β n β m ) L ] · exp [ j ( ( ϕ n ( t , L ) ϕ m ( t , L ) ) + K f I RF f c ( sin ( 2 π f c ( t τ n L ) ) sin ( 2 π f c ( t τ m L ) ) ) ) ] .
i out ( t , L ) = n = 1 N M A m 2 b m m ( 1 + m I cos ( 2 π f c ( t τ m L ) ) ) + m = 1 N M n = m + 1 N M 2 A m A n b m n · [ 1 + m I cos ( π f c Δ τ g , m n ) cos ( π f c ( τ m + τ n ) L ) ] · [ cos ( x m n cos ( 2 π f c t π f c ( τ m + τ n ) L ) ) · cos ( Δ φ m n ( t ) ) + sin ( x m n cos ( 2 π f c t π f c ( τ m + τ n ) L ) ) · sin ( Δ φ m n ( t ) ) ] ,
b m n = S PD e m ( x , y ) · e n * ( x , y ) d S ,
Δ τ g , m n = ( τ m τ n ) L ,
Δ φ m n ( t ) = ( β m β n ) L + ( ϕ m ( t , L ) ϕ n ( t , L ) ) ,
x m n = 2 π K f I RF Δ τ g , m n sin ( π f c Δ τ g , m n ) π f c Δ τ g , m n .
I DC out ( t ) = I DC out + Δ I DC out ( t ) ,
I DC out = m = 1 N M A m 2 ,
Δ I DC out ( t ) = m = 1 N M n = m + 1 N M 2 A m A n b m n J 0 ( x m n ) · cos ( Δ φ m n ( t ) ) ,
i RF out ( t ) = ( A c + B c ) cos ( 2 π f c t ) + ( A s + B s ) sin ( 2 π f c t ) ,
A c = m I m = 1 N M A m 2 cos ( 2 π f c τ m L ) ,
A s = m I m = 1 N M A m 2 sin ( 2 π f c τ m L ) ,
B c = m = 1 N M n = m + 1 N M 2 A m A n b m n C m n ( t ) cos ( π f c ( τ m + τ n ) L ) ,
B s = m = 1 N M n = m + 1 N M 2 A m A n b m n C m n ( t ) sin ( π f c ( τ m + τ n ) L ) ,
C m n ( t ) = m I cos ( π f c Δ τ g , m n ) · J 0 ( x m n ) · cos ( Δ φ m n ( t ) ) + 2 J 1 ( x m n ) · sin ( Δ φ m n ( t ) ) .
i RF out ( t ) = ( I RF out + Δ I RF out ( t ) ) cos ( 2 π f c ( t τ g L ) ) ,
I RF out = m I m = 1 N M A m 2 = m I · I DC out ,
Δ I RF out ( t ) = m = 1 N M n = m + 1 N M 2 A m A n b m n [ m I · J 0 ( x m n ) · cos ( Δ φ m n ( t ) ) + 2 J 1 ( x m n ) · sin ( Δ φ m n ( t ) ) ] ,
Δ I DC out ( t ) m = 1 N M n = m + 1 N M 2 A m A n b m n · cos ( Δ φ m n ( t ) ) ,
Δ I RF out ( t ) m = 1 N M n = m + 1 N M 2 A m A n b m n [ m I · cos ( Δ φ m n ( t ) ) + 2 π K f I RF ( τ m τ n ) L · sin ( Δ φ m n ( t ) ) ] = m I Δ I DC out ( t ) + 2 π K f · I RF · L · m = 1 N M n = m + 1 N M 2 A m A n b m n ( τ m τ n ) · sin ( Δ φ m n ( t ) ) .
G RF = | I RF out + Δ I RF out ( t ) I RF | 2 ,
Δ G RF M A X = 10 · log 10 | [ I RF out + Δ I RF out ( t ) ] M A X [ I RF out + Δ I RF out ( t ) ] M I N | 2 = 20 · log 10 ( I RF out / m I + [ Δ I RF out ( t ) / m I ] M A X I RF out / m I + [ Δ I RF out ( t ) / m I ] M I N ) ,

Metrics