Abstract

We investigate the characteristics of a thin disk laser system based on the master oscillator—power amplifier design. The amplifier emits parasitic laser oscillation (PL) when the wavelength of the tunable narrow-bandwidth seed pulse is detuned more than 4nm from the gain maximum at 1030nm. For suppression of this unwanted PL, a birefringent filter (Lyot filter) was inserted into the amplifier cavity in order to generate wavelength selective losses, especially at the gain maximum of the Yb:YAG crystal. It is shown that the tunability range of the laser system can be extended by a factor of 4, when a prop erly chosen Lyot filter is applied and its angle of rotation is adapted to the seed wavelength of the system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
  2. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726-728 (2008).
    [CrossRef] [PubMed]
  3. M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.
  4. N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
    [CrossRef]
  5. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
    [CrossRef]
  6. A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
    [CrossRef]
  7. D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
    [CrossRef]
  8. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
    [CrossRef]
  9. A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
    [CrossRef]
  10. D. R. Preuss and J. L. Gole, “Three-stage birefringent filiglter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702-710 (1980).
    [CrossRef] [PubMed]
  11. X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filiglters,” Appl. Opt. 31, 4505-4508 (1992).
    [CrossRef] [PubMed]
  12. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

2008

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726-728 (2008).
[CrossRef] [PubMed]

2006

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

2005

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

2004

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

2001

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

1994

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

1992

1980

Baer, C. R. E.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Baum, A.

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Burkert, A.

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

Dekorsy, T.

Eigenbrod, C.

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Eigenbrod, Ch.

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

Giesen, A.

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Gole, J. L.

Grebner, D.

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Huber, G.

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Keller, U.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Killi, A.

Kleinbauer, J.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Koenig, J.

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

Kränkel, C.

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Larionov, M.

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Marchese, S. V.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Müller, D.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

Neuhaus, J.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Paa, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Pavel, N.

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Petermann, K.

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Peters, R.

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Preuss, D. R.

Schmidl, G.

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

Stafast, H.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

Stolzenburg, C.

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Südmeyer, T.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Sutter, D.

Triebel, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Wang, X.

Weiler, S.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Yao, J.

Acta Astronaut.

A. Burkert, W. Paa, G. Schmidl, W. Triebel, and Ch. Eigenbrod, “Investigation of droplet ignition under microgravity conditions using laser-based techniques--an overview,” Acta Astronaut. 55, 199-209 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, “In-band pumping of Nd-vanadate thin-disk lasers,” Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Appl. Phys. B

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1-5 (2006).
[CrossRef]

A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, and A. Giesen, “Axial mode tuning of a single frequency Yb:YAG thin disk laser,” Appl. Phys. B 81, 1091-1096 (2005).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).

Nat. Photon.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2, 599-604 (2008).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. Grebner, D. Müller, W. Triebel, and J. Koenig, “Temporally and spatially resolved diagnostics of nonstationary flames using a kHz disk laser: an intermediate report,” Proc. SPIE 4448, 16 (2001).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

M. Larionov, C. Stolzenburg, A. Giesen, W. Paa, W. Triebel, and C. Eigenbrod, “Single-frequency tunable pulsed thin disk laser for drop tower applications,” presentation at the Conference on Lasers and Electro-Optics Europe, Munich, 2005paper CA3-1-TUE.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Elements of the two-stage ADL system (seed laser, pulse generation, beam shaping, optical diode, and regenerative amplifier) and an experimental setup for measuring the spectral characteristics of the output beam.

Fig. 2
Fig. 2

Calculated transmittance (single pass) of a 2 mm thick quartz Lyot filter at the Brewster angle α Br in dependence on wavelength and angle of rotation.

Fig. 3
Fig. 3

Amplifier spectra (normalized to 1000   counts / spectrum ) at different wavelengths of the seed laser and 1 W output power (ensured by varying the number of round trips).

Fig. 4
Fig. 4

Spectral intensity distribution within the amplifier in dependence on the wavelength of the seed laser [derived from Fig. 3].

Fig. 5
Fig. 5

Amplifier spectra ( 1 W output power) with integrated 2 mm thick Lyot filter (quartz, α Br ) at different wavelengths of the seed laser.

Fig. 6
Fig. 6

Angle of rotation γ (black) and number of round trips within the amplifier (white), providing a pulse energy of 1 mJ (background: calculated transmittance if the Lyot filter is passed two times, bright regions corresponding to high transmittance).

Metrics