Abstract

A hexagonal nanostructure formed by seven core shell nanocylinders filled with different dielectric cores is investigated. The surface plasmon resonance in such a hexagonal nanostructure under conditions of different illumination wavelengths, dielectric cores, angles of incidence, and thicknesses of silver shells is studied by use of the finite element method. Simulation results show that the resonant wavelength is redshifted as the dielectric constant and the size of the core increase. The peak resonant wavelength and the local field enhancement are approximately proportional to the radius of the dielectric core. Additionally, the surface plasmon field excited by TM-polarized light at the incident angle of θ=15° is exactly a linear combination of those excited at incident angles of θ=0° and 30°, confirming the linear nature of the surface plasmon resonance in a nanostructure formed by linear media.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription