Abstract

A hexagonal nanostructure formed by seven core shell nanocylinders filled with different dielectric cores is investigated. The surface plasmon resonance in such a hexagonal nanostructure under conditions of different illumination wavelengths, dielectric cores, angles of incidence, and thicknesses of silver shells is studied by use of the finite element method. Simulation results show that the resonant wavelength is redshifted as the dielectric constant and the size of the core increase. The peak resonant wavelength and the local field enhancement are approximately proportional to the radius of the dielectric core. Additionally, the surface plasmon field excited by TM-polarized light at the incident angle of θ=15° is exactly a linear combination of those excited at incident angles of θ=0° and 30°, confirming the linear nature of the surface plasmon resonance in a nanostructure formed by linear media.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
    [CrossRef] [PubMed]
  2. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
    [CrossRef]
  3. I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
    [CrossRef] [PubMed]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  6. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
    [CrossRef] [PubMed]
  7. Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
    [CrossRef] [PubMed]
  8. T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
    [CrossRef] [PubMed]
  9. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  10. S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  11. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
    [CrossRef]
  12. M. Y. Ng, W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135–S139 (2005).
  13. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  14. M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  15. H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
    [CrossRef]
  16. H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
    [CrossRef]
  17. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  18. E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
    [CrossRef]
  19. K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  20. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
    [CrossRef]
  21. Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
    [CrossRef]
  22. P. M. Gresho, R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.
  23. COMSOL Multiphysics, http://www.comsol.com (email: info @comsol.com).
  24. P. B. Johnson, R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  25. T. Okamoto, Near-Field Spectral Analysis of Metallic Beads (Springer, 2001), p. 99.
  26. Y. F. Chau, H. H. Yeh, D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
    [CrossRef] [PubMed]
  27. P. K. Jain, M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
    [CrossRef]
  28. Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  29. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  30. J. Kottmann, O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [CrossRef] [PubMed]
  31. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
    [CrossRef] [PubMed]

2008 (2)

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

Y. F. Chau, H. H. Yeh, D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
[CrossRef] [PubMed]

2007 (2)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

P. K. Jain, M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

2006 (2)

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

2005 (4)

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

M. Y. Ng, W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135–S139 (2005).

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

2003 (6)

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

2002 (3)

Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

2001 (3)

J. Kottmann, O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef] [PubMed]

2000 (1)

T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Aussenegg, F.

Bergman, D. J.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Cao, Y. C.

Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

Chau, Y. F.

Cheah, K. W.

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Gresho, P. M.

P. M. Gresho, R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

Halas, N. J.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

Huber, J. B.

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

Huber, R.

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Jain, P. K.

P. K. Jain, M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

Jin, R.

Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Kottmann, J.

Krenn, J.

Lalanne, P.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Leitner, A.

Letsinger, R. L.

T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Li, K. F.

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Liu, H.

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

Liu, W. C.

M. Y. Ng, W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135–S139 (2005).

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Martin, O.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

Mirkin, C. A.

Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Ng, M. Y.

M. Y. Ng, W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135–S139 (2005).

Nie, S.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
[CrossRef]

Ohtsu, M.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Okamoto, T.

T. Okamoto, Near-Field Spectral Analysis of Metallic Beads (Springer, 2001), p. 99.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Prodan, E.

E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
[CrossRef]

Pun, Y. B.

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Qiu, M.

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Ruan, Z.

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Sani, R. L.

P. M. Gresho, R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schultz, D. A.

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[CrossRef] [PubMed]

Stockman, M. I.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Tam, H. L.

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Taton, T. A.

T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Tsai, D. P.

Wang, X.

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

Wang, Y.

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Wong, W. H.

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Xia, J. B.

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

Yang, J.

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

Yatsui, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

Yeh, H. H.

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics: a route to nano scale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Curr. Opin. Biotechnol. (1)

D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13–22 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Areas Commun. (1)

H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330–1333 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
[CrossRef]

J. Alloys Compd. (1)

Y. Zhang, X. Wang, Y. Wang, H. Liu, J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473–477 (2008).
[CrossRef]

J. Korean Phys. Soc. (1)

M. Y. Ng, W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135–S139 (2005).

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (1)

P. K. Jain, M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

Nano. Lett. (2)

E. Prodan, P. Nordlander, N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411–1415 (2003).
[CrossRef]

I. H. El-Sayed, X. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev Lett. (1)

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. B. Johnson, R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (3)

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Other (3)

P. M. Gresho, R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

COMSOL Multiphysics, http://www.comsol.com (email: info @comsol.com).

T. Okamoto, Near-Field Spectral Analysis of Metallic Beads (Springer, 2001), p. 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of seven (a) solid silver nanocylinders and (b) core shell metallic nanocylinders arranged in a hexagonal structure.

Fig. 2
Fig. 2

Near-field intensities within the nano cylinders for case 1 and case 2 as a function of wavelength of TM- polarized incident light at 350 800 nm . The calculation point is at the center of the inner nanocylinders with the maximal near-field intensity. The angles of incidence are (a)  θ = 0 ° , (b)  θ = 15 ° , (c)  θ = 30 ° .

Fig. 3
Fig. 3

Near-field intensities outside the nano cylinders of case 1 and case 2 as a function of wavelength of TM- polarized incident light at 350 800 nm . The calculation point is at the center of the gap between the two nanocylinders with the maximal near-field intensity. The angles of the incident light are (a)  θ = 0 ° , (b)  θ = 15 ° , (c)  θ = 30 ° .

Fig. 4
Fig. 4

Near-field distributions in the core shell nanocylinders arranged in a hexagonal structure. (a) Incident light of λ = 400 , 450, 500, 525, 550, 600, 650, 700, 725, 750, 775, and 800 nm . The angle of incident light is θ = 0 ° as shown in Fig. 2a and the dielectric cores with ε = 1 within the nanocylinders are considered. (b) The wavelength of incident light is 660 nm and the angles of incident light are 0 ° , 15 ° , and 30 ° . The dielectric cores with ε = 3.06 within the nanocylinders are considered.

Fig. 5
Fig. 5

Near-field intensity versus inner radius r 2 . The parameters are maintained as the outer radius r 1 = 25 nm and the dielectric cores within the nanocylinders with dielectric constants at their peak wavelengths as listed are (a) within and (b) outside the nanocylinders.

Fig. 6
Fig. 6

Peak wavelength as a function of inner radius r 2 with outer radius r 1 = 25 nm and the dielectric cores within the nanocylinders with dielectric constants as listed (a) within and (b) outside the nanocylinders.

Metrics