Abstract

We report on microscopic imaging of phospholipid membranes. To achieve nonlabel, noncontact, and high spatial resolution imaging of the membranes, we use optically excited localized surface plasmons as a virtual measurement probe to obtain the local refractive index. This enables significantly higher lateral resolution of 170nm. We reveal that the developed microscope has the capability of observing lipid bilayers with thickness of 3.0nm deposited into the gaps in a patterned lipid bilayer with thickness of 4.6nm. We find that the thickness resolution against the deposited lipid bilayer is 0.33nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  2. B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
    [CrossRef]
  3. W. Hickel, W. Knoll, “Surface plasmon microscopy of lipid layers,” Thin Solid Films 187, 349–356 (1990).
    [CrossRef]
  4. E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
    [CrossRef] [PubMed]
  5. J. T. Groves, S. G. Boxer, “Micropattern formation in supported lipid membranes,” Acc. Chem. Res. 35, 149–157 (2002).
    [CrossRef] [PubMed]
  6. K. Tawa, K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89, 2750–2758 (2005).
    [CrossRef] [PubMed]
  7. C. A. Keller, B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal micro balance,” Biophys. J. 75, 1397–1402 (1998).
    [CrossRef] [PubMed]
  8. A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
    [CrossRef]
  9. Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
    [CrossRef] [PubMed]
  10. C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
    [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  12. H. Kano, S. Mizuguchi, S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [CrossRef]
  13. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006).
    [CrossRef] [PubMed]
  14. H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
    [CrossRef]
  15. K. Watanabe, N. Horiguchi, H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985–4990 (2007).
    [CrossRef] [PubMed]
  16. K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
    [CrossRef] [PubMed]
  17. H. Kano, W. Knoll, “Locally excited surface-plasmon- polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
    [CrossRef]
  18. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
    [CrossRef]
  19. G. Terakado, K. Watanabe, H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt. 48, 1114–1118 (2009).
    [CrossRef]
  20. K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
    [CrossRef] [PubMed]
  21. D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

2009 (1)

2007 (2)

K. Watanabe, N. Horiguchi, H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985–4990 (2007).
[CrossRef] [PubMed]

K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
[CrossRef] [PubMed]

K. Tawa, K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89, 2750–2758 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

2002 (1)

J. T. Groves, S. G. Boxer, “Micropattern formation in supported lipid membranes,” Acc. Chem. Res. 35, 149–157 (2002).
[CrossRef] [PubMed]

2001 (2)

A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
[CrossRef]

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

2000 (1)

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

1998 (3)

H. Kano, S. Mizuguchi, S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon- polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

C. A. Keller, B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal micro balance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef] [PubMed]

1996 (1)

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

1990 (1)

W. Hickel, W. Knoll, “Surface plasmon microscopy of lipid layers,” Thin Solid Films 187, 349–356 (1990).
[CrossRef]

1988 (1)

B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
[CrossRef]

1968 (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Baumgart, T.

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Boxer, S. G.

J. T. Groves, S. G. Boxer, “Micropattern formation in supported lipid membranes,” Acc. Chem. Res. 35, 149–157 (2002).
[CrossRef] [PubMed]

Cheng, Q.

Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
[CrossRef] [PubMed]

Duschl, C.

B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
[CrossRef]

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Groves, J. T.

J. T. Groves, S. G. Boxer, “Micropattern formation in supported lipid membranes,” Acc. Chem. Res. 35, 149–157 (2002).
[CrossRef] [PubMed]

Hickel, W.

W. Hickel, W. Knoll, “Surface plasmon microscopy of lipid layers,” Thin Solid Films 187, 349–356 (1990).
[CrossRef]

Horiguchi, N.

Jenkins, A. T. A.

A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
[CrossRef]

Kano, H.

Kasemo, B.

C. A. Keller, B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal micro balance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef] [PubMed]

Kawata, S.

Keller, C. A.

C. A. Keller, B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal micro balance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef] [PubMed]

Knoll, W.

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon- polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

W. Hickel, W. Knoll, “Surface plasmon microscopy of lipid layers,” Thin Solid Films 187, 349–356 (1990).
[CrossRef]

B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Kretschmann, E.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Marsh, D.

D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Mizuguchi, S.

Morigaki, K.

K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
[CrossRef] [PubMed]

K. Tawa, K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89, 2750–2758 (2005).
[CrossRef] [PubMed]

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

Neumann, T.

A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
[CrossRef]

Offenhäusser, A.

A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
[CrossRef]

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Okazaki, T.

K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rothenhäusler, B.

B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
[CrossRef]

Sackmann, E.

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

Schönherr, H.

K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
[CrossRef] [PubMed]

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Tawa, K.

K. Tawa, K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89, 2750–2758 (2005).
[CrossRef] [PubMed]

Terakado, G.

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Wang, Z. Z.

Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
[CrossRef] [PubMed]

Watanabe, K.

Wilkop, T.

Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
[CrossRef] [PubMed]

Zhan, Q.

Acc. Chem. Res. (1)

J. T. Groves, S. G. Boxer, “Micropattern formation in supported lipid membranes,” Acc. Chem. Res. 35, 149–157 (2002).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. Morigaki, T. Baumgart, A. Offenhäusser, W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Engl. 40, 172–174 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophys. J. (2)

K. Tawa, K. Morigaki, “Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy,” Biophys. J. 89, 2750–2758 (2005).
[CrossRef] [PubMed]

C. A. Keller, B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal micro balance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Langmuir (3)

K. Morigaki, H. Schönherr, T. Okazaki, “Polymerization of diacetylen phospholipid bilayers on solid substrate: influence of the film deposition temperature,” Langmuir 23, 12254–12260 (2007).
[CrossRef] [PubMed]

A. T. A. Jenkins, T. Neumann, A. Offenhäusser, “Surface plasmon microscopy measurements of lipid vesicle adsorption on a micropatterned self-assembled monolayer,” Langmuir 17, 265–267 (2001).
[CrossRef]

Z. Z. Wang, T. Wilkop, Q. Cheng, “Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein,” Langmuir 21, 10292–10296 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

H. Kano, W. Knoll, “Locally excited surface-plasmon- polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

Opt. Lett. (1)

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, N. Miyanaga, “Generation of vector beams with axially symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Science (1)

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

Thin Solid Films (1)

B. Rothenhäusler, C. Duschl, W. Knoll, “Plasmon surface polariton fields for the characterization of thin films,” Thin Solid Films 159, 323–330 (1988).
[CrossRef]

Thin Solid Films (1)

W. Hickel, W. Knoll, “Surface plasmon microscopy of lipid layers,” Thin Solid Films 187, 349–356 (1990).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Optical setup to localize the surface plasmon. The two arrows indicate the optical path for the excitation of surface plasmons. (b) Propagation of the surface plasmons on the metal surface. The interference of the surface plasmons localizes them.

Fig. 2
Fig. 2

Calculated intensity distribution of the reflected light at the exit pupil plane of the objective lens.

Fig. 3
Fig. 3

Apparatus of the developed LSP microscope. L1–L5, lenses.

Fig. 4
Fig. 4

Calculated electric-field-intensity distribution of the localized surface plasmon assuming radially polarized light for the excitation light. (a) Distribution on the Si O 2 surface. The line plot in (b) is the profile along the white dotted line in (a).

Fig. 5
Fig. 5

Schematic outline of the bilayer patterning procedure.

Fig. 6
Fig. 6

Effective refractive index distribution of the patterned lipid bilayer observed by the LSP microscope.

Fig. 7
Fig. 7

Calculated plot of the effective refractive index on the substrate as a function of the refractive index of bilayers. The inset represents the calculation model.

Fig. 8
Fig. 8

Calculated plot of the effective refractive index as a function of the thickness of bilayers.

Fig. 9
Fig. 9

Effective refractive index distribution of the DLPC bilayers in gaps in the patterned lipid bilayer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ sp = Real ( ω c ( n m 2 n s 2 n m 2 + n s 2 ) 1 / 2 ) ,

Metrics