Abstract

We have developed a physical model for the spectral irradiance of 1kW tungsten halogen incandescent lamps for the wavelength range 340850nm. The model consists of the Planck’s radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
    [CrossRef]
  2. P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
    [CrossRef]
  3. V. I. Sapritskii, “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
    [CrossRef]
  4. H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
    [CrossRef]
  5. L. P. Boivin, “Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers,” Appl. Opt. 19, 2771–2780 (1980).
    [CrossRef] [PubMed]
  6. P. Corredera, A. Corróns, A. Pons, J. Campos, “Absolute spectral irradiance scale in the 700–2400 nm spectral range,” Appl. Opt. 29, 3530–3534 (1990).
    [CrossRef] [PubMed]
  7. T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
    [CrossRef]
  8. Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
    [CrossRef]
  9. J. C. de Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
    [CrossRef]
  10. R. D. Larrabee, “The spectral emissivity and optical properties of tungsten,” Technical Report 328 (Research Laboratory of Electronics, Massachusetts Institute of Technology, 1957).
  11. J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).
  12. G. Andor, “New data-reduction method in detector-based spectral irradiance measurements,” Metrologia 32, 495–496 (1995).
    [CrossRef]
  13. G. Andor, “Approximation function of spectral irradiance of standard lamps,” Metrologia 35, 427–429 (1998).
    [CrossRef]
  14. L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
    [CrossRef]
  15. R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340 nm to 2.6 μm spectral region,” Appl. Opt. 23, 975–976 (1984).
    [CrossRef] [PubMed]
  16. L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
    [CrossRef]
  17. L. Fu, “Increasing the brightness of light sources,” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Philipps Universität, 2006).
  18. Y. S. Toukolan, C. Y. Ho, Thermophysical Properties of Matter 7, Thermal Radiative Properties—Metallic Elements and Alloys (IFI/Plenum, 1970).
  19. R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E 2, 515–517 (1969).
    [CrossRef]
  20. P. N. V’Yugov, V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500–3000 °C,” High Temp. 3, 879–880 (1965).
  21. F. J. Studer, R. F. VanBeers, “Modification of spectrum of tungsten filament quartz-iodine lamps due to iodine vapor,” J. Opt. Soc. Am. 54, 945–947 (1964).
    [CrossRef]
  22. E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
    [CrossRef]
  23. G. A. W. Rutgers, J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715–720 (1954).
    [CrossRef]
  24. W. E. Forsythe, E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114–118 (1934).
    [CrossRef]
  25. G. A. Zhorov, “Electrical resistivity and emissivity of some transition metals and alloys in the high-temperature range,” High Temp. 10, 1202–1204 (1972).
  26. B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
    [CrossRef]

2009 (1)

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

2006 (2)

L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
[CrossRef]

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

2005 (1)

B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
[CrossRef]

2003 (2)

H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
[CrossRef]

2000 (1)

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

1998 (2)

G. Andor, “Approximation function of spectral irradiance of standard lamps,” Metrologia 35, 427–429 (1998).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

1995 (2)

G. Andor, “New data-reduction method in detector-based spectral irradiance measurements,” Metrologia 32, 495–496 (1995).
[CrossRef]

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

1990 (2)

1987 (1)

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

1984 (1)

1980 (1)

1972 (1)

G. A. Zhorov, “Electrical resistivity and emissivity of some transition metals and alloys in the high-temperature range,” High Temp. 10, 1202–1204 (1972).

1969 (1)

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E 2, 515–517 (1969).
[CrossRef]

1965 (1)

P. N. V’Yugov, V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500–3000 °C,” High Temp. 3, 879–880 (1965).

1964 (1)

1954 (2)

G. A. W. Rutgers, J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715–720 (1954).
[CrossRef]

J. C. de Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

1934 (1)

W. E. Forsythe, E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114–118 (1934).
[CrossRef]

Andor, G.

G. Andor, “Approximation function of spectral irradiance of standard lamps,” Metrologia 35, 427–429 (1998).
[CrossRef]

G. Andor, “New data-reduction method in detector-based spectral irradiance measurements,” Metrologia 32, 495–496 (1995).
[CrossRef]

Barnes, P. Y.

H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

Boivin, L. P.

Cagran, C.

B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
[CrossRef]

Campos, J.

Corredera, P.

Corróns, A.

Cox, M. G.

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

de Vos, J. C.

G. A. W. Rutgers, J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715–720 (1954).
[CrossRef]

J. C. de Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

Forsythe, W. E.

W. E. Forsythe, E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114–118 (1934).
[CrossRef]

Fox, N. P.

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

Fu, L.

L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
[CrossRef]

L. Fu, “Increasing the brightness of light sources,” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Philipps Universität, 2006).

Gibson, G. E.

H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

Gumenyuk, V. S.

P. N. V’Yugov, V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500–3000 °C,” High Temp. 3, 879–880 (1965).

Harris, P. M.

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

Harrison, N. J.

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

Hessler, J. P.

Ho, C. Y.

Y. S. Toukolan, C. Y. Ho, Thermophysical Properties of Matter 7, Thermal Radiative Properties—Metallic Elements and Alloys (IFI/Plenum, 1970).

Ikonen, E.

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Jackson, J. K.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

Jokela, K.

L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
[CrossRef]

Kärhä, P.

L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
[CrossRef]

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Knibbs, R. H.

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E 2, 515–517 (1969).
[CrossRef]

Kübarsepp, T.

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Larrabee, R. D.

R. D. Larrabee, “The spectral emissivity and optical properties of tungsten,” Technical Report 328 (Research Laboratory of Electronics, Massachusetts Institute of Technology, 1957).

Leutz, R.

L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
[CrossRef]

Liu, Y. J.

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

Manoocheri, F.

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

McSparron, D. A.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

Metzdorf, J.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Möller, W.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Nevas, S.

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Ojanen, M.

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

Pon, R. M.

Pons, A.

Pottlacher, G.

B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
[CrossRef]

Ralph, V. E.

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

Ries, H.

L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
[CrossRef]

Rutgers, G. A. W.

G. A. W. Rutgers, J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715–720 (1954).
[CrossRef]

Sapritskii, V. I.

V. I. Sapritskii, “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
[CrossRef]

Saunders, R. D.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

Sperfeld, P.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Stock, K. D.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Studer, F. J.

Toukolan, Y. S.

Y. S. Toukolan, C. Y. Ho, Thermophysical Properties of Matter 7, Thermal Radiative Properties—Metallic Elements and Alloys (IFI/Plenum, 1970).

V’Yugov, P. N.

P. N. V’Yugov, V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500–3000 °C,” High Temp. 3, 879–880 (1965).

VanBeers, R. F.

Walker, J. H.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

Watson, E. M.

W. E. Forsythe, E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114–118 (1934).
[CrossRef]

White, R. M.

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

Wilthan, B.

B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
[CrossRef]

Woolliams, E. R.

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

Xu, G.

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

Ylianttila, L.

L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
[CrossRef]

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Yoon, H. W.

H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

Yousef, S. Galal

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Zhorov, G. A.

G. A. Zhorov, “Electrical resistivity and emissivity of some transition metals and alloys in the high-temperature range,” High Temp. 10, 1202–1204 (1972).

Appl. Opt. (3)

High Temp. (2)

P. N. V’Yugov, V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500–3000 °C,” High Temp. 3, 879–880 (1965).

G. A. Zhorov, “Electrical resistivity and emissivity of some transition metals and alloys in the high-temperature range,” High Temp. 10, 1202–1204 (1972).

Int. J. Thermophys. (1)

B. Wilthan, C. Cagran, G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017–1029 (2005).
[CrossRef]

J, Opt. Soc. Am. (1)

W. E. Forsythe, E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114–118 (1934).
[CrossRef]

J. Appl. Phys. (1)

L. Fu, R. Leutz, H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. E (1)

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E 2, 515–517 (1969).
[CrossRef]

Metrologia (10)

G. Andor, “New data-reduction method in detector-based spectral irradiance measurements,” Metrologia 32, 495–496 (1995).
[CrossRef]

G. Andor, “Approximation function of spectral irradiance of standard lamps,” Metrologia 35, 427–429 (1998).
[CrossRef]

L. Ylianttila, K. Jokela, P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120–S123 (2003).
[CrossRef]

T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305–312 (2000).
[CrossRef]

Y. J. Liu, G. Xu, M. Ojanen, E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181–S185 (2009).
[CrossRef]

R. M. White, N. P. Fox, V. E. Ralph, N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431–434 (1995).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

V. I. Sapritskii, “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
[CrossRef]

H. W. Yoon, G. E. Gibson, P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003 (2006).
[CrossRef]

Natl. Bur. Stand. (U.S.) Spec. Publ. (1)

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).

Physica (2)

J. C. de Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

G. A. W. Rutgers, J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715–720 (1954).
[CrossRef]

Other (3)

R. D. Larrabee, “The spectral emissivity and optical properties of tungsten,” Technical Report 328 (Research Laboratory of Electronics, Massachusetts Institute of Technology, 1957).

L. Fu, “Increasing the brightness of light sources,” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Philipps Universität, 2006).

Y. S. Toukolan, C. Y. Ho, Thermophysical Properties of Matter 7, Thermal Radiative Properties—Metallic Elements and Alloys (IFI/Plenum, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured spectral irradiances of the lamp at different operating currents.

Fig. 2
Fig. 2

Residual corrections, after the spectral irradiances measured at different operating currents have been divided by the blackbody radiance and the emissivity of tungsten. The residual corrections have been normalized in such a way that their average is 1. The solid line is an eighth degree polynomial fitted to the average of the residual corrections.

Fig. 3
Fig. 3

Deviation of the modeled spectral irradiances from earlier TKK calibrations for four FEL type lamps. The dashed lines represent the expanded uncertainties of the calibration of the lamps.

Fig. 4
Fig. 4

Deviation of the modeled spectral irradiances from earlier TKK calibrations for four DXW type lamps. The dashed lines represent the expanded uncertainties of the calibration of the lamps.

Fig. 5
Fig. 5

Deviation between the model and the NPL calibrations. The dashed lines represent the expanded uncertainties of NPL.

Fig. 6
Fig. 6

Deviation in the spectral irradiance values using a color temperature with ± 10 K deflection and an illuminance value with ± 1 % deflection from the nominal values.

Fig. 7
Fig. 7

Ratio of the hot resistance to the room temperature resistance, scaled by T 319 K . The resistance ratio was corrected for the contribution of the weakly glowing stem by 0.25 % . The uncertainty of this correction is assumed to have a rectangular distribution with a full width of 0.5%. The uncertainty bars correspond to the expanded uncertainties ( k = 2 ) of the resistance ratio and temperature measurements.

Tables (3)

Tables Icon

Table 1 Operating Currents, Corresponding Voltages, and Final Burning Temperatures of an FEL Lamp

Tables Icon

Table 2 Coefficients for the Eighth Degree Polynomial Modeling the Residual Emissivity

Tables Icon

Table 3 Uncertainty Budget of the Lamp Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( λ , T ) = B ( T ) ε W ( λ , T ) ε Δ ( λ ) 2 h c 2 λ 5 [ exp ( h c λ k T ) 1 ] ,
B ( T ) = B 0 [ 1 + b ( T ) ] ,
b ( T ) = 0.000016 K 1 ( T T 0 ) ,
ε Δ ( λ ) = E meas ( λ , T ) L ( λ , T ) ε W ( λ , T ) B ( T ) ,
T = R ( T ) 0.0062 K 1 R ( 295 K ) + 319 K .

Metrics