Abstract

Light propagation in a fibrous anisotropic scattering medium is quite different from that in an isotropic medium. Both the anisotropic diffuse equation (ADE) and the continuous time random walk (CTRW) theory predict that the equi-intensity profiles of the surface reflectance have an elliptical shape in a fibrous turbid medium. In this study, we simulated the spatially resolved surface reflectance in a fibrous sample using a Monte Carlo model. A parametric equation was used to quantitatively characterize the geometric profiles of the reflectance patterns. The results indicated that the equi-intensity profiles of surface reflectance had elliptical shapes only when evaluated at distances far away from the incident point. The length ratio of the two orthogonal axes of the ellipse was not affected by the sample optical properties when the ratio of reduced scattering coefficients along the two axes is the same. But the relationship between the aforementioned two ratios was different from the predication of ADE theory. Only for fibers of small sizes did the fitted axes ratios approach the values predicted from the ADE theory.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
    [CrossRef]
  2. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
    [CrossRef] [PubMed]
  3. F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
    [CrossRef]
  4. M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).
  5. H. Stark, T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996).
    [CrossRef] [PubMed]
  6. J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
    [CrossRef]
  7. P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
    [CrossRef] [PubMed]
  8. L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
    [CrossRef] [PubMed]
  9. J. C. Hebden, J. J. G. Guerrero, V. Chernomordik, A. H. Gandjbakhche, “Experimental evaluation of an anisotropic scattering model of a slab geometry,” Opt. Lett. 29, 2518–2520 (2004).
    [CrossRef] [PubMed]
  10. A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
    [CrossRef]
  11. J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
    [CrossRef]
  12. A. Kienle, F. K. Forster, R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29, 2617–2619 (2004).
    [CrossRef] [PubMed]
  13. A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
    [CrossRef] [PubMed]
  14. J. Schafer, A. Kienle, “Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory,” Opt. Lett. 33, 2413–2415 (2008).
    [CrossRef] [PubMed]
  15. A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
    [CrossRef] [PubMed]
  16. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16, 9895–9906 (2008).
    [CrossRef] [PubMed]
  17. H. A. Yousif, E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406–414 (1992).
    [CrossRef]
  18. C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  19. L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  20. J. Ranasinghesagara, G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15, 3998–4007 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

2006 (1)

J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
[CrossRef]

2005 (1)

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

2004 (2)

2003 (3)

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
[CrossRef] [PubMed]

2002 (1)

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

2001 (1)

F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
[CrossRef]

2000 (1)

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

H. Stark, T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996).
[CrossRef] [PubMed]

1995 (1)

L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1992 (1)

H. A. Yousif, E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406–414 (1992).
[CrossRef]

1990 (1)

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Arridge, S.

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Asgari, H.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Bohern, C. F.

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boutros, E.

H. A. Yousif, E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406–414 (1992).
[CrossRef]

Bret, B. P. J.

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

Chernomordik, V.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

J. C. Hebden, J. J. G. Guerrero, V. Chernomordik, A. H. Gandjbakhche, “Experimental evaluation of an anisotropic scattering model of a slab geometry,” Opt. Lett. 29, 2518–2520 (2004).
[CrossRef] [PubMed]

Cohen, Y.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

D’Andrea, C.

Dagdug, L.

L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
[CrossRef] [PubMed]

Diebolder, R.

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Eidsath, A.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

Essenpreis, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Farrell, T. J.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Forster, F. K.

A. Kienle, F. K. Forster, R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29, 2617–2619 (2004).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
[CrossRef]

Foschum, F.

Gandjbakhche, A. H.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

J. C. Hebden, J. J. G. Guerrero, V. Chernomordik, A. H. Gandjbakhche, “Experimental evaluation of an anisotropic scattering model of a slab geometry,” Opt. Lett. 29, 2518–2520 (2004).
[CrossRef] [PubMed]

L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
[CrossRef] [PubMed]

Guerrero, J. J. G.

Hassan, M.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

Hebden, J. C.

Heino, J.

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Hermann, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Hibst, R.

A. Kienle, F. K. Forster, R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29, 2617–2619 (2004).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
[CrossRef]

Hsieh, F.

J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
[CrossRef]

Huffman, D. R.

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jacques, S. L.

L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Johnson, P. M.

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

Kelly, J. J.

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

Kienle, A.

A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16, 9895–9906 (2008).
[CrossRef] [PubMed]

J. Schafer, A. Kienle, “Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory,” Opt. Lett. 33, 2413–2415 (2008).
[CrossRef] [PubMed]

A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29, 2617–2619 (2004).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
[CrossRef]

Krämer, U.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Kucharczyk, J.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Lagendijk, A.

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

Lin, S.-P.

Lubensky, T. C.

H. Stark, T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996).
[CrossRef] [PubMed]

Marquez, G.

Mintorovitch, J.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Moseley, M.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Nickell, S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Norman, D.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Patterson, M. S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

Pifferi, A.

Ranasinghesagara, J.

J. Ranasinghesagara, G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15, 3998–4007 (2007).
[CrossRef] [PubMed]

J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
[CrossRef]

Rivas, J. G.

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

Russo, A.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

Schafer, J.

Schwartz, J. A.

Sikora, J.

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Smith, P.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

Somersalo, E.

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Stark, H.

H. Stark, T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996).
[CrossRef] [PubMed]

Sviridov, A.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

Taroni, P.

Thomsen, S. L.

Tsuruda, J.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Wang, L. V.

G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Weiss, G. H.

L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
[CrossRef] [PubMed]

Wendland, M.

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Yao, G.

J. Ranasinghesagara, G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15, 3998–4007 (2007).
[CrossRef] [PubMed]

J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
[CrossRef]

Yousif, H. A.

H. A. Yousif, E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406–414 (1992).
[CrossRef]

Zheng, L.

L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comp. Phys. Commun. (1)

H. A. Yousif, E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406–414 (1992).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. V. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012–014019 (2005).
[CrossRef]

J. Food Sci. (1)

J. Ranasinghesagara, F. Hsieh, G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227–E231 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (3)

A. Kienle, F. K. Forster, R. Diebolder, R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000).
[CrossRef] [PubMed]

L. Dagdug, G. H. Weiss, A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003).
[CrossRef] [PubMed]

Phys. Rev. E (1)

J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002).
[CrossRef] [PubMed]

H. Stark, T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996).
[CrossRef] [PubMed]

A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. K. Forster, A. Kienle, R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103–109 (2001).
[CrossRef]

Radiology (Oak Brook, Ill.) (1)

M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439–445 (1990).

Other (1)

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illustration of the scattering medium, which is composed of infinite long cylinders and uniformly distributed spherical particles. (b) Schematic diagram of the simulated experimental setup.

Fig. 2
Fig. 2

Sample reflectance images obtained in (a) isotropic and (b) anisotropic mediums. The cylinders were aligned with the y axis (vertical direction). The dash lines were sample fitting results using Eq. (5). The fitting parameters β and q were shown as a function of the distance along the y axis in the above (c) isotropic and (d) anisotropic media.

Fig. 3
Fig. 3

(a) Fitted axes ratio β versus the ADE prediction of μ s ( x ) / μ s ( y ) in anisotropic media of three different cylinder radii: 0.1, 0.25, and 1.5 μm . The background optical properties used in the simulation were μ s , b = 30 cm 1 , g b = 0.8 , and μ a = 0.01 cm 1 . (b) Fitted axes ratio β versus cylinder radius. μ s ( x ) / μ s ( y ) was maintained at constant value of 1.08.

Fig. 4
Fig. 4

Fitted axes ratio β and total diffuse reflectance at different (a) background scattering coefficients μ s , b , (c) background anisotropies g b , and (e) absorption coefficients μ a . The corresponding transition distances were shown in (b), (d), and (f), respectively. Unless otherwise indicated, the optical properties in the simulation were r = 0.1 μm , μ s , b = 30 cm 1 , g b = 0.8 , μ a = 0.01 cm 1 , and μ s ( x ) / μ s ( y ) = 1.08 .

Fig. 5
Fig. 5

(a) Scattering efficiency Q s and (b) anisotropy g c as a function of incident angle ξ for cylinders of different radii.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μ s , c ( ξ ) = 2 r * c A Q * s ( ξ ) ,
g c ( ξ ) = cos θ = cos 2 ξ + sin 2 ξ 0 π cos ϕ p ( ϕ , ξ ) sin ϕ d ϕ 0 π p ( ϕ , ξ ) sin ϕ d ϕ .
if     ζ < μ s , c μ s , c + μ s , b , scattered by cylinders,
ζ ϕ = 0 ϕ p ( ϕ , ξ ) ϕ = 0 180 p ( ϕ , ξ ) ,
f ( x , y ) = ( | x | r x ) q + ( | y | r y ) q 1 = 0 ,
β = r y / r x .

Metrics