Abstract

The optical properties of AgGaTe2 chalcopyrite semiconductor are studied by optical absorption, spectroscopic ellipsometry (SE), and thermoreflectance (TR) spectroscopy. Optical absorption spectra suggest that AgGaTe2 is a direct-gap semiconductor having a bandgap of 1.2eV at T=300K. The pseudodielectric-function spectra of AgGaTe2 are determined by SE in the range between E=1.2 and 5.2eV for both states of polarization. These spectra reveal distinct structures at energies of the critical points in the Brillouin zone. The TR spectra are also measured in the E=1.05.3eV ranges at T=20K300K. The spin–orbit and crystal-field splitting parameters of AgGaTe2 are determined to be Δso=0.70eV and Δcr=0.23eV, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites (Springer, 2006).
    [CrossRef]
  2. O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
    [CrossRef]
  3. H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
    [CrossRef]
  4. B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
    [CrossRef]
  5. B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
    [CrossRef]
  6. N. N. Konstantinova, Y. V. Rud’, “Optical properties of AgGaTe2 single crystals,” Sov. Phys. Semicond. 23, 1101–1104 (1989).
  7. C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
    [CrossRef]
  8. M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
    [CrossRef]
  9. P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
    [CrossRef]
  10. I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
    [CrossRef]
  11. U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
    [CrossRef]
  12. R. Kumar, R. K. Bedi, “Characterization of thermally evaporated AgGaTe2 films grown on KCl substrates,” J. Mater. Sci. 40, 455–459 (2005).
    [CrossRef]
  13. J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
    [CrossRef]
  14. H. G. Tompkins, E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
    [CrossRef]
  15. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  16. S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic, 1999).
    [CrossRef] [PubMed]
  17. R. K. Willardson, A. C. Beer, Semiconductors and Semimetals (Academic, 1972), Vol. 9.
    [CrossRef]
  18. D. E. Aspnes, “Direct verification of the third-derivative nature of electroreflectance spectra,” Phys. Rev. Lett. 28, 168–171 (1972).
    [CrossRef]
  19. P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
    [CrossRef]
  20. S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
    [CrossRef]
  21. T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
    [CrossRef]
  22. E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
    [CrossRef]
  23. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [CrossRef]
  24. R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Stat. Solidi B 200, 155–172 (1997).
    [CrossRef]
  25. R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Stat. Solidi B 216, 975–1007 (1999).
    [CrossRef]
  26. B. O. Seraphin, N. Bottka, “Band-structure analysis from electro-reflectance studies,” Phys. Rev. 145, 628–636 (1966).
    [CrossRef]
  27. P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
    [CrossRef]
  28. S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
    [CrossRef]
  29. S. Ozaki, S. Adachi, “Optical absorption and photoluminescence in the ternary chalcopyrite semiconductor AgInSe2,” J. Appl. Phys. 100, 113526 (2006).
    [CrossRef]
  30. S. Ozaki, S. Adachi, “Temperature dependence of the lowest-direct-bandgap energy in the ternary chalcopyrite semiconductor AgInSe2,” J. Mater. Sci. Mater. Electron. 18, S25–S28 (2007).
    [CrossRef]
  31. D. G. Thomas, J. J. Hopfield, “Exciton spectrum of cadmium sulfide,” Phys. Rev. 116, 573–582 (1959).
    [CrossRef]
  32. J. J. Hopfield, “Fine structure in the optical absorption edge of anisotropic crystals,” J. Phys. Chem. Solids 15, 97–107 (1960).
    [CrossRef]
  33. A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
    [CrossRef]
  34. R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
    [CrossRef]
  35. S. N. Rashkeev, W. R. L. Lambrecht, “Second-harmonic generation of I−III−VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B 63, 165212 (2001).
    [CrossRef]
  36. A. H. Reshak, “Linear, nonlinear optical properties and birefringence of AgGaX2 ((X=S,Se,Te) compounds,” Phys. B 369, 243–253 (2005).
    [CrossRef]
  37. L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
    [CrossRef] [PubMed]
  38. C. Mitra, W. R. L. Lambrecht, “Band-gap bowing in AgGa(Se1−xTex)2 and its effect on the second-order response coefficient and refractive indices,” Phys. Rev. B 76, 205206 (2007).
    [CrossRef]
  39. M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.
  40. J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
    [CrossRef]
  41. J. E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).
    [CrossRef]
  42. S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
    [CrossRef]

2007 (2)

S. Ozaki, S. Adachi, “Temperature dependence of the lowest-direct-bandgap energy in the ternary chalcopyrite semiconductor AgInSe2,” J. Mater. Sci. Mater. Electron. 18, S25–S28 (2007).
[CrossRef]

C. Mitra, W. R. L. Lambrecht, “Band-gap bowing in AgGa(Se1−xTex)2 and its effect on the second-order response coefficient and refractive indices,” Phys. Rev. B 76, 205206 (2007).
[CrossRef]

2006 (3)

S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
[CrossRef]

S. Ozaki, S. Adachi, “Optical absorption and photoluminescence in the ternary chalcopyrite semiconductor AgInSe2,” J. Appl. Phys. 100, 113526 (2006).
[CrossRef]

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

2005 (2)

R. Kumar, R. K. Bedi, “Characterization of thermally evaporated AgGaTe2 films grown on KCl substrates,” J. Mater. Sci. 40, 455–459 (2005).
[CrossRef]

A. H. Reshak, “Linear, nonlinear optical properties and birefringence of AgGaX2 ((X=S,Se,Te) compounds,” Phys. B 369, 243–253 (2005).
[CrossRef]

2004 (1)

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

2002 (1)

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

2001 (1)

S. N. Rashkeev, W. R. L. Lambrecht, “Second-harmonic generation of I−III−VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B 63, 165212 (2001).
[CrossRef]

2000 (2)

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

1999 (3)

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Stat. Solidi B 216, 975–1007 (1999).
[CrossRef]

1998 (1)

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

1997 (1)

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Stat. Solidi B 200, 155–172 (1997).
[CrossRef]

1996 (1)

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

1990 (1)

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[CrossRef]

1989 (1)

N. N. Konstantinova, Y. V. Rud’, “Optical properties of AgGaTe2 single crystals,” Sov. Phys. Semicond. 23, 1101–1104 (1989).

1987 (2)

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

1986 (1)

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

1983 (1)

J. E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).
[CrossRef]

1975 (1)

B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
[CrossRef]

1974 (2)

B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
[CrossRef]

A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
[CrossRef]

1972 (1)

D. E. Aspnes, “Direct verification of the third-derivative nature of electroreflectance spectra,” Phys. Rev. Lett. 28, 168–171 (1972).
[CrossRef]

1970 (1)

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

1968 (1)

E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

1966 (1)

B. O. Seraphin, N. Bottka, “Band-structure analysis from electro-reflectance studies,” Phys. Rev. 145, 628–636 (1966).
[CrossRef]

1960 (1)

J. J. Hopfield, “Fine structure in the optical absorption edge of anisotropic crystals,” J. Phys. Chem. Solids 15, 97–107 (1960).
[CrossRef]

1959 (1)

D. G. Thomas, J. J. Hopfield, “Exciton spectrum of cadmium sulfide,” Phys. Rev. 116, 573–582 (1959).
[CrossRef]

1953 (1)

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Adachi, S.

S. Ozaki, S. Adachi, “Temperature dependence of the lowest-direct-bandgap energy in the ternary chalcopyrite semiconductor AgInSe2,” J. Mater. Sci. Mater. Electron. 18, S25–S28 (2007).
[CrossRef]

S. Ozaki, S. Adachi, “Optical absorption and photoluminescence in the ternary chalcopyrite semiconductor AgInSe2,” J. Appl. Phys. 100, 113526 (2006).
[CrossRef]

S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
[CrossRef]

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[CrossRef]

S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic, 1999).
[CrossRef] [PubMed]

Adetunji, O. O.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Alapini, F.

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

Amirthakumari, R. M.

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

Asokamani, R.

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Direct verification of the third-derivative nature of electroreflectance spectra,” Phys. Rev. Lett. 28, 168–171 (1972).
[CrossRef]

Bai, L.

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

Balkanski, M.

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

Barthe-Lefin, F.

B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
[CrossRef]

Bedi, R. K.

R. Kumar, R. K. Bedi, “Characterization of thermally evaporated AgGaTe2 films grown on KCl substrates,” J. Mater. Sci. 40, 455–459 (2005).
[CrossRef]

Beer, A. C.

R. K. Willardson, A. C. Beer, Semiconductors and Semimetals (Academic, 1972), Vol. 9.
[CrossRef]

Bodnar, I. V.

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

Bottka, N.

B. O. Seraphin, N. Bottka, “Band-structure analysis from electro-reflectance studies,” Phys. Rev. 145, 628–636 (1966).
[CrossRef]

Burger, A.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Cardona, M.

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
[CrossRef]

Chattopahhyay, K.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Chen, C.

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

Cohen, M. L.

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.

Cui, Y.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Danilson, M.

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Frank, G.

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Garriga, M.

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

Goldstein, J. T.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Gremenok, V. F.

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

Grossberg, M.

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Guittard, M.

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

Hahn, H.

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Hegde, S. M.

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Heine, V.

M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.

Hopfield, J. J.

J. J. Hopfield, “Fine structure in the optical absorption edge of anisotropic crystals,” J. Phys. Chem. Solids 15, 97–107 (1960).
[CrossRef]

D. G. Thomas, J. J. Hopfield, “Exciton spectrum of cadmium sulfide,” Phys. Rev. 116, 573–582 (1959).
[CrossRef]

Irene, E. A.

H. G. Tompkins, E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

Ivanov, I.

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

Jaffe, J. E.

J. E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).
[CrossRef]

Jagomägi, A.

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Julien, C.

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

Kasper, H. M.

B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
[CrossRef]

Kawashima, T.

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

Khelfa, A.

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

Klingler, W.

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Kochari, F.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Konstantinova, N. N.

N. N. Konstantinova, Y. V. Rud’, “Optical properties of AgGaTe2 single crystals,” Sov. Phys. Semicond. 23, 1101–1104 (1989).

Krustok, J.

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Kumar, R.

R. Kumar, R. K. Bedi, “Characterization of thermally evaporated AgGaTe2 films grown on KCl substrates,” J. Mater. Sci. 40, 455–459 (2005).
[CrossRef]

Lambrecht, W. R. L.

C. Mitra, W. R. L. Lambrecht, “Band-gap bowing in AgGa(Se1−xTex)2 and its effect on the second-order response coefficient and refractive indices,” Phys. Rev. B 76, 205206 (2007).
[CrossRef]

S. N. Rashkeev, W. R. L. Lambrecht, “Second-harmonic generation of I−III−VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B 63, 165212 (2001).
[CrossRef]

Lautenschlager, P.

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

Lin, Z.

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

Logothetidis, S.

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

Madelung, O.

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
[CrossRef]

Martin, R. W.

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

Matatagui, E.

E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
[CrossRef]

Mekonen, B.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Meyer, A. D.

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Mitra, C.

C. Mitra, W. R. L. Lambrecht, “Band-gap bowing in AgGa(Se1−xTex)2 and its effect on the second-order response coefficient and refractive indices,” Phys. Rev. B 76, 205206 (2007).
[CrossRef]

Miyake, H.

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

Ohmer, M. C.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Ozaki, S.

S. Ozaki, S. Adachi, “Temperature dependence of the lowest-direct-bandgap energy in the ternary chalcopyrite semiconductor AgInSe2,” J. Mater. Sci. Mater. Electron. 18, S25–S28 (2007).
[CrossRef]

S. Ozaki, S. Adachi, “Optical absorption and photoluminescence in the ternary chalcopyrite semiconductor AgInSe2,” J. Appl. Phys. 100, 113526 (2006).
[CrossRef]

S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
[CrossRef]

Papadopoulo- Scherle, A. C.

B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
[CrossRef]

Pässler, R.

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Stat. Solidi B 216, 975–1007 (1999).
[CrossRef]

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Stat. Solidi B 200, 155–172 (1997).
[CrossRef]

Petroff, Y.

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

Pollak, T. M.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Polygalov, Y. I.

A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
[CrossRef]

Poplavnoi, A. S.

A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
[CrossRef]

Rashkeev, S. N.

S. N. Rashkeev, W. R. L. Lambrecht, “Second-harmonic generation of I−III−VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B 63, 165212 (2001).
[CrossRef]

Ratner, A. M.

A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
[CrossRef]

Rau, U.

S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites (Springer, 2006).
[CrossRef]

Raudoja, J.

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Ravi, C.

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

Reshak, A. H.

A. H. Reshak, “Linear, nonlinear optical properties and birefringence of AgGaX2 ((X=S,Se,Te) compounds,” Phys. B 369, 243–253 (2005).
[CrossRef]

Rita, R.

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

Roy, U. N.

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

Rud’, Y. V.

N. N. Konstantinova, Y. V. Rud’, “Optical properties of AgGaTe2 single crystals,” Sov. Phys. Semicond. 23, 1101–1104 (1989).

Sasaki, M.

S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
[CrossRef]

Saxler, A. W.

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Schunemann, P. G.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Seitz, F.

M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.

Seraphin, B. O.

B. O. Seraphin, N. Bottka, “Band-structure analysis from electro-reflectance studies,” Phys. Rev. 145, 628–636 (1966).
[CrossRef]

Sermage, B.

B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
[CrossRef]

Setzler, S. D.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

Shay, J. L.

B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
[CrossRef]

Siebentritt, S.

S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites (Springer, 2006).
[CrossRef]

Störger, G.

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Sugiyama, K.

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

Tell, B.

B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
[CrossRef]

Thomas, D. G.

D. G. Thomas, J. J. Hopfield, “Exciton spectrum of cadmium sulfide,” Phys. Rev. 116, 573–582 (1959).
[CrossRef]

Thompson, A. G.

E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

Turnbull, D.

M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Viña, L.

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

Walter, J. P.

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

Wang, Z.

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

Willardson, R. K.

R. K. Willardson, A. C. Beer, Semiconductors and Semimetals (Academic, 1972), Vol. 9.
[CrossRef]

Wolf, J. D.

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Yakushev, M. V.

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

Zelmon, D. E.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

Zunger, A.

J. E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).
[CrossRef]

J. Appl. Phys. (3)

M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, A. W. Saxler, S. M. Hegde, J. D. Wolf, P. G. Schunemann, T. M. Pollak, “Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94–99 (1999).
[CrossRef]

T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, “Optical constants of CuGaSe2 and CuInSe2,” J. Appl. Phys. 84, 5202–5209 (1998).
[CrossRef]

S. Ozaki, S. Adachi, “Optical absorption and photoluminescence in the ternary chalcopyrite semiconductor AgInSe2,” J. Appl. Phys. 100, 113526 (2006).
[CrossRef]

J. Chem. Phys. (1)

L. Bai, Z. Lin, Z. Wang, C. Chen, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120, 8772–8778 (2004).
[CrossRef] [PubMed]

J. Cryst. Growth (2)

P. G. Schunemann, S. D. Setzler, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, D. E. Zelmon, “Crystal growth and properties of AgGaTe2,” J. Cryst. Growth 211, 242–246 (2000).
[CrossRef]

U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y. Cui, A. Burger, J. T. Goldstein, “Compositional variations and phase stability during horizontal Bridgman growth of AgGaTe2 crystals,” J. Cryst. Growth 241, 135–140 (2002).
[CrossRef]

J. Mater. Sci. (2)

R. Kumar, R. K. Bedi, “Characterization of thermally evaporated AgGaTe2 films grown on KCl substrates,” J. Mater. Sci. 40, 455–459 (2005).
[CrossRef]

C. Julien, I. Ivanov, A. Khelfa, F. Alapini, M. Guittard, “Characterization of the ternary compounds AgGaTe2 and AgGa5Te8,” J. Mater. Sci. 31, 3315–3319 (1996).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

S. Ozaki, S. Adachi, “Temperature dependence of the lowest-direct-bandgap energy in the ternary chalcopyrite semiconductor AgInSe2,” J. Mater. Sci. Mater. Electron. 18, S25–S28 (2007).
[CrossRef]

J. Phys. Chem. Solids (1)

J. J. Hopfield, “Fine structure in the optical absorption edge of anisotropic crystals,” J. Phys. Chem. Solids 15, 97–107 (1960).
[CrossRef]

J. Phys. Colloq. (1)

B. Sermage, F. Barthe-Lefin, A. C. Papadopoulo- Scherle, “Variation avec la température de la bande interdite du champ cristallin et du couplage spin-orbite en centre de zone de AgGaSe2 et AgGaTe2,” J. Phys. Colloq. 36, C3-137 (1975).
[CrossRef]

Opt. Spectrosc. (1)

I. V. Bodnar, V. F. Gremenok, R. W. Martin, M. V. Yakushev, “Photoluminescence spectra of the AgGaTe2 single crystals doped with hydrogen,” Opt. Spectrosc. 88, 377–379 (2000).
[CrossRef]

Phys. B (1)

A. H. Reshak, “Linear, nonlinear optical properties and birefringence of AgGaX2 ((X=S,Se,Te) compounds,” Phys. B 369, 243–253 (2005).
[CrossRef]

Phys. Rev. (3)

D. G. Thomas, J. J. Hopfield, “Exciton spectrum of cadmium sulfide,” Phys. Rev. 116, 573–582 (1959).
[CrossRef]

B. O. Seraphin, N. Bottka, “Band-structure analysis from electro-reflectance studies,” Phys. Rev. 145, 628–636 (1966).
[CrossRef]

E. Matatagui, A. G. Thompson, M. Cardona, “Thermoreflectance in semiconductors,” Phys. Rev. 176, 950–960 (1968).
[CrossRef]

Phys. Rev. B (9)

P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[CrossRef]

S. N. Rashkeev, W. R. L. Lambrecht, “Second-harmonic generation of I−III−VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B 63, 165212 (2001).
[CrossRef]

C. Mitra, W. R. L. Lambrecht, “Band-gap bowing in AgGa(Se1−xTex)2 and its effect on the second-order response coefficient and refractive indices,” Phys. Rev. B 76, 205206 (2007).
[CrossRef]

J. P. Walter, M. L. Cohen, Y. Petroff, M. Balkanski, “Calculated and measured reflectivity of ZnTe and ZnSe,” Phys. Rev. B 1, 2661–2667 (1970).
[CrossRef]

J. E. Jaffe, A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).
[CrossRef]

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[CrossRef]

B. Tell, J. L. Shay, H. M. Kasper, “Some properties of AgAlTe2, AgGaTe2, and AgInTe2,” Phys. Rev. B 9, 5203–5208 (1974).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821–4830 (1987).
[CrossRef]

S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, “Temperature dependence of the dielectric function and interband critical points of CdSe,” Phys. Rev. B 34, 2458–2468 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

D. E. Aspnes, “Direct verification of the third-derivative nature of electroreflectance spectra,” Phys. Rev. Lett. 28, 168–171 (1972).
[CrossRef]

Phys. Stat. Solidi A (1)

S. Ozaki, M. Sasaki, S. Adachi, “Positive temperature variation of the bandgap energy in AgGaSe2,” Phys. Stat. Solidi A 203, 2648–2652 (2006).
[CrossRef]

Phys. Stat. Solidi B (3)

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Stat. Solidi B 200, 155–172 (1997).
[CrossRef]

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Stat. Solidi B 216, 975–1007 (1999).
[CrossRef]

R. Asokamani, R. M. Amirthakumari, R. Rita, C. Ravi, “Electronic structure calculations and physical properties of ABX2 (A=Cu,Ag; B=Ga,In; X=S,Se,Te) ternary chalcopyrite systems,” Phys. Stat. Solidi B 213, 349–363 (1999).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. Krustok, A. Jagomägi, M. Grossberg, J. Raudoja, M. Danilson, “Photoluminescence properties of polycrystalline AgGaTe2,” Sol. Energy Mater. Sol. Cells 90, 1973–1982 (2006).
[CrossRef]

Sov. Phys. J. (1)

A. S. Poplavnoi, Y. I. Polygalov, A. M. Ratner, “Energy band structure of the compounds AgGaS2, AgGaSe2, and AgGaTe2,” Sov. Phys. J. 17, 1495–1499 (1974).
[CrossRef]

Sov. Phys. Semicond. (1)

N. N. Konstantinova, Y. V. Rud’, “Optical properties of AgGaTe2 single crystals,” Sov. Phys. Semicond. 23, 1101–1104 (1989).

Z. Anorg. Allg. Chem. (1)

H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, “Über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. 271, 153–170 (1953).
[CrossRef]

Other (7)

S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites (Springer, 2006).
[CrossRef]

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
[CrossRef]

H. G. Tompkins, E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic, 1999).
[CrossRef] [PubMed]

R. K. Willardson, A. C. Beer, Semiconductors and Semimetals (Academic, 1972), Vol. 9.
[CrossRef]

M. L. Cohen, V. Heine, F. Seitz, D. Turnbull, eds. (Academic, 1970), Vol. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Square of the absorption coefficient α 2 as a function of photon energy for Ag Ga Te 2 at T = 15 K , 200 K, and 300 K for (a)  E c and (b)  E c . (c) Temperature variation of the fundamental absorption edge ( E 0 ) for Ag Ga Te 2 . The solid curves represent the calculated results using Eq. (5). The fit-determined parameter values are listed in Table 1.

Fig. 2
Fig. 2

Complex dielectric-function spectra ε ( E ) = ε 1 ( E ) + i ε 2 ( E ) of Ag Ga Te 2 for (a)  E c and (b)  E c . The open circles are determined by SE at T = 300 K . The solid curves are obtained from the sum of Eqs. (B1, B5), and ε 1 ; see also Table 2.

Fig. 3
Fig. 3

Numerically calculated spectral dependence of the complex refractive index n * ( E ) = n ( E ) + i k ( E ) for Ag Ga Te 2 (solid curves). The open circles represent the experimental data taken from SE. The open triangles also show the experimental data obtained using the polarization interference method [8].

Fig. 4
Fig. 4

Numerically calculated spectral dependence of the absorption coefficient α ( E ) and normal-incidence reflectivity R ( E ) for Ag Ga Te 2 (solid curves). The open circles represent the experimental data determined by SE.

Fig. 5
Fig. 5

TR spectra for Ag Ga Te 2 measured at T = 20 K 300 K .

Fig. 6
Fig. 6

TR spectra for Ag Ga Te 2 measured at T = 20 K . The solid curves represent the fits using Eq. (13), with n = 1 , to the experimental data.

Fig. 7
Fig. 7

Temperature variations of the E 0 α ( α = A , B , C ) and E 1 CP energies in Ag Ga Te 2 determined from the SCP analysis. The fit-determined parameter values are summarized in Table 1.

Fig. 8
Fig. 8

Relationships between the valence-band splitting in the zinc-blende and chalcopyrite lattices and between the irreducible representations of the bands at the Γ point. The selection rules of the optical dipole transitions are also shown in (c) and (d).

Fig. 9
Fig. 9

Electronic energy-band structure of Ag Ga Te 2 calculated by EPM. The main interband optical transitions are indicated by vertical arrows.

Tables (3)

Tables Icon

Table 1 Values of E g ( 0 ) , α p , Θ p , and p in Eq. (5) for Ag Ga Te 2 a

Tables Icon

Table 2 Critical-Point Parameters used in the Calculation of Optical Constants for Ag Ga Te 2 at T = 300 K

Tables Icon

Table 3 Experimentally Determined Critical Point Energies at T = 0 K in Ag Ga Te 2 , with Those Obtained from the Empirical Pseudopotential Method a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ρ = r s r p = tan Ψ e i Δ ,
G ( ε 1 , ε 2 , ε 1 | | , ε 2 | | ) = δ = 0 ° , 90 ° | { Re ( ρ δ meas ) Re ( ρ δ cal ) } 2 + { Im ( ρ δ meas ) Im ( ρ δ cal ) } 2 | ,
T = ( 1 R ) 2 e α x 1 R 2 e 2 α x ,
α ( E ) = A ( E E 0 ) 1 / 2 .
E g ( T ) = E g ( 0 ) α p Θ p 2 [ 1 + ( 2 T Θ p ) p p 1 ] ,
d E g ( T ) d T = α p ( 2 T Θ p ) p 1 [ 1 + ( 2 T Θ p ) p ] ( 1 p ) / p .
n ( E ) = ( [ ε 1 ( E ) 2 + ε 2 ( E ) 2 ] 1 2 + ε 1 ( E ) 2 ) 1 2 ,
k ( E ) = ( [ ε 1 ( E ) 2 + ε 2 ( E ) 2 ] 1 2 ε 1 ( E ) 2 ) 1 2 .
α ( E ) = 4 π λ k ( E ) ,
R ( E ) = [ n ( E ) 1 ] 2 + k ( E ) 2 [ n ( E ) + 1 ] 2 + k ( E ) 2 ,
Δ R R = 1 R R ε 1 Δ ε 1 + 1 R R ε 2 Δ ε 2 = α Δ ε 1 + β Δ ε 2 ,
Δ ε 1 , 2 = ε 1 , 2 T Δ T = ε 1 , 2 E g d E g d T Δ T + ε 1 , 2 Γ d Γ d T Δ T .
ε ( E ) = C A e i θ ( E E g + i Γ ) n ,
d ε ( E ) d E g = { A e i θ ( E E g + i Γ ) 1 , n = 0 n A e i θ ( E E g + i Γ ) n 1 , n 0 .
E B A = E 0 B E 0 A = Δ so + Δ cr 2 ( Δ so + Δ cr 2 ) 2 2 3 Δ so Δ cr ,
E C A = E 0 C E 0 A = Δ so + Δ cr 2 + ( Δ so + Δ cr 2 ) 2 2 3 Δ so Δ cr .
P 0 A 2 : P 0 B 2 : P 0 C 2 : P 0 A | | 2 : P 0 B | | 2 : P 0 C | | 2 = 1 0.21 0.79 0 1.58 0.42
ε ( E ) = α = A , B , C A 0 α E 0 α 1.5 f ( x 0 α ) ,
A 0 α = 4 3 ( 3 2 μ 0 α ) 1.5 P 0 α 2 ,
f ( x 0 α ) = x 0 α 2 [ 2 ( 1 + x 0 α ) 1 / 2 + ( 1 x 0 α ) 1 / 2 ] ,
x 0 α = ( E + i Γ ) / E 0 α .
ε ( E ) = C n ( 1 x n 2 ) i x n γ n ,
x n = E / E n ,

Metrics