Abstract

We report on a compact Nd:YAG amplifier emitting a maximum pulse energy of 14mJ. By amplifying a passively Q-switched oscillator (M2<1.2) a good beam quality of M21.7 was achieved. The amplifier is diode pumped by an 8 bar diode stack of 800W power and a nonimaging optic. This optic homogenizes the pump light and transfers it into a 5mm diameter core doped rod with a centrally neodymium doped region of 3mm and a samarium doped YAG cladding. We show that this cladding reduces parasitic effects in the laser rod compared to an undoped YAG cladding. Finally, we compare the compact amplifier with an amplifier, which is mode selectively pumped by a fiber coupled pump diode.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Krebs, A.-M. Novo-Gradac, S. X. Li, S. J. Lindauer, R. S. Afzal, and A. W. Yu, “Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury,” Appl. Opt. 44, 1715-1718 (2005).
    [CrossRef] [PubMed]
  2. J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.
  3. W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
    [CrossRef]
  4. P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006).
    [CrossRef] [PubMed]
  5. A. Lucianetti, R. Weber, W. Hodel, H. P. Weber, A. Papashvili, V. A. Konyushkin, and T. T. Basiev, “Beam-quality improvement of a passively Q-switched Nd:YAG laser with a core-doped rod,” Appl. Opt. 38, 1777-1783 (1999).
    [CrossRef]
  6. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212-6216(2005).
    [CrossRef] [PubMed]
  7. D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped ceramic Nd:YAG laser,” Opt. Express 14, 2690-2694 (2006).
    [CrossRef] [PubMed]
  8. A. Sträßer and M. Ostermeyer, “Improving the brightness of side pumped power amplifiers by using core doped ceramic rods,” Opt. Express 14, 6687-6693 (2006).
    [CrossRef] [PubMed]
  9. A. E. Siegman, Lasers (University Science, 1986).
  10. R. J. Beach, “Theory and optimization of lens ducts,” Appl. Opt. 35, 2005-2015 (1996).
    [CrossRef] [PubMed]
  11. B. W. Schilling, S. R. Chinn, A. D. Hays, L. Goldberg, and C. W. Trussell, “End-pumped 1.5 μm monoblock laser for broad temperature operation,” Appl. Opt. 45, 6607-6615 (2006).
    [CrossRef] [PubMed]
  12. R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).
  13. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
    [CrossRef]
  14. R. Huß and R. Wilhelm, personal communication.

2006

2005

2004

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

1999

1996

Afzal, R. S.

Basiev, T. T.

Beach, R. J.

Benitez, P. G.

R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Bisson, J. F.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
[CrossRef]

Brand, T.

Chinn, S. R.

Fallnich, C.

Frede, M.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped ceramic Nd:YAG laser,” Opt. Express 14, 2690-2694 (2006).
[CrossRef] [PubMed]

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212-6216(2005).
[CrossRef] [PubMed]

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

Freiburg, D.

Goldberg, L.

Haag, M.

Hahn, S.

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

Hays, A. D.

Hodel, W.

Huß, R.

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

R. Huß and R. Wilhelm, personal communication.

Köhler, B.

Konyushkin, V. A.

Kracht, D.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped ceramic Nd:YAG laser,” Opt. Express 14, 2690-2694 (2006).
[CrossRef] [PubMed]

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212-6216(2005).
[CrossRef] [PubMed]

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

Krebs, D. J.

Lee, W. B.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Lee, Y. I.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Li, S. X.

Lindauer, S. J.

Lucianetti, A.

Minano, J. C.

R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Neumann, J.

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

Novo-Gradac, A.-M.

Ostermeyer, M.

Papashvili, A.

Peuser, P.

P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006).
[CrossRef] [PubMed]

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

Platz, W.

Schilling, B. W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Sneddon, J.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Sträßer, A.

Trussell, C. W.

Ueda, K.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
[CrossRef]

Weber, H. P.

Weber, R.

Wilhelm, R.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped ceramic Nd:YAG laser,” Opt. Express 14, 2690-2694 (2006).
[CrossRef] [PubMed]

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212-6216(2005).
[CrossRef] [PubMed]

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

R. Huß and R. Wilhelm, personal communication.

Winston, R.

R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Wu, J. Y.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Yagi, H.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
[CrossRef]

Yanagitani, T.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
[CrossRef]

Yu, A. W.

Zeller, P.

Appl. Opt.

Appl. Spectrosc. Rev.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

J. Lumin.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88-94 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Neumann, S. Hahn, R. Huß, R. Wilhelm, M. Frede, D. Kracht, and P. Peuser, “Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne Bepi Colombo laser altimeter,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2006), paper CWF1.

A. E. Siegman, Lasers (University Science, 1986).

R. Huß and R. Wilhelm, personal communication.

R. Winston, J. C. Minano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Setup for measurement of the time resolved fluorescence.

Fig. 2
Fig. 2

Geometry of the core doped ceramics.

Fig. 3
Fig. 3

Representative time-resolved fluorescence intensity for selected pump energies (only a few measured curves are shown): (a) core doped ceramic with YAG cladding, (b) core doped ceramic with Sm : YAG cladding.

Fig. 4
Fig. 4

(a) MOPA setup in single path amplification geometry, (b) amplified pulse energy for optimized overlap between pump volume and seed laser beam.

Fig. 5
Fig. 5

(a) Schematic drawing of an optical concentrator, (b) calculated transfer efficiency as a function of the concentrator length. Dimensions of entrance and exit facet were kept constant. Inset: spatial distribution of the transmitted light 0.5 mm behind the exit facet of the concentrator.

Fig. 6
Fig. 6

Numerical calculations of the pump light absorption in a 3 mm diameter cylindrical volume around the optical axis for core doped and homogeneously doped rods versus pump wavelength.

Fig. 7
Fig. 7

Numerical calculated distributions of pump light absorption at a pump wavelength of 805 nm in the core doped rods: (a) integrated absorption along the optical axis, (b) distribution along the optical axis. All distances are measured from the end face of the ceramic at the pump side.

Fig. 8
Fig. 8

Cross section through the centroid of measured FPOA distribution and calculated pump light absorption at a pump wavelength of 806.5 nm : (a) fast axis, (b) slow axis.

Fig. 9
Fig. 9

(a) Double pass amplifier setup in V-shaped configuration pumped by a fiber coupled diode, (b) compact amplifier pumped by diode stack and concentrator.

Fig. 10
Fig. 10

Amplifier slope when pumped by a fiber coupled diode.

Fig. 11
Fig. 11

Measured beam caustic after a lens with focal length of 300 mm , when amplified with the compact amplifier.

Fig. 12
Fig. 12

Amplifier slopes of the compact amplifier at different diode stack temperatures, i.e., pump wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 [ 1 exp ( t / τ ) ]

Metrics