Abstract

Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3×3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  3. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530-532 (2002).
    [CrossRef]
  4. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987).
    [CrossRef] [PubMed]
  5. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186-188 (1988).
    [CrossRef] [PubMed]
  6. W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4-6 (1992).
    [CrossRef] [PubMed]
  7. M. J. Everett, K. Schoenenberger, B. W. Colston Jr., and L. B. Da Si, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228-230 (1998).
    [CrossRef]
  8. M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry,” Appl. Opt. 38, 4047-4052 (1999).
    [CrossRef]
  9. C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
    [CrossRef]
  10. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2261 (1995).
    [CrossRef] [PubMed]
  11. T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low coherence confocal interference microscope,” Opt. Lett. 21, 1942-1944 (1996).
    [CrossRef] [PubMed]
  12. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett. 23, 966-968 (1998).
    [CrossRef]
  13. A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28, 2112-2114 (2003).
    [CrossRef] [PubMed]
  14. H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
    [CrossRef]
  15. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996).
    [CrossRef] [PubMed]
  16. C. K. Hitzenberger, A. Baumgartner and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179-185 (1998).
    [CrossRef]
  17. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  18. L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
    [CrossRef]

2009

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

2006

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
[CrossRef]

2005

C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
[CrossRef]

2003

2002

1999

1998

1996

1995

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1988

1987

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179-185 (1998).
[CrossRef]

Boccara, A. C.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chiu, M. H.

Ciddor, P. E.

Clivaz, W.

Colston, B. W.

Da Si, L. B.

Davies, D. E. N.

Drexler, W.

Dubois, A.

Everett, M. J.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Froehly, L.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

Fujimoto, J. G.

Fukano, T.

Furfaro, L.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

Gilgen, H. H.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Haruna, M.

Hashimoto, M.

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2261 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hirai, A.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
[CrossRef]

A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28, 2112-2114 (2003).
[CrossRef] [PubMed]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179-185 (1998).
[CrossRef]

Hsu, C. C.

C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Jeanningros, P.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

Kärtner, F. X.

Lee, J. Y.

C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
[CrossRef]

M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry,” Appl. Opt. 38, 4047-4052 (1999).
[CrossRef]

Leitgeb, R.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Marquis-Weible, F.

Maruyama, H.

Matsumoto, H.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
[CrossRef]

A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28, 2112-2114 (2003).
[CrossRef] [PubMed]

Mengedoht, K.

Mitsuyama, T.

Morgner, U.

Novak, R. P.

Ohmi, M.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Salathe, R. P.

Sandoz, P.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

Sasaki, K.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
[CrossRef]

Schoenenberger, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Southern, J. F.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Su, D. C.

C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
[CrossRef]

M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry,” Appl. Opt. 38, 4047-4052 (1999).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tajiri, H.

Tearney, G. J.

Vabre, L.

Werner, W.

Yamaguchi, I.

Youngquist, R. C.

Appl. Opt.

Opt. Commun.

C. K. Hitzenberger, A. Baumgartner and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179-185 (1998).
[CrossRef]

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282, 1488-1495 (2009).
[CrossRef]

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266, 214-217 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530-532 (2002).
[CrossRef]

R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987).
[CrossRef] [PubMed]

A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186-188 (1988).
[CrossRef] [PubMed]

W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4-6 (1992).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston Jr., and L. B. Da Si, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228-230 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2261 (1995).
[CrossRef] [PubMed]

T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low coherence confocal interference microscope,” Opt. Lett. 21, 1942-1944 (1996).
[CrossRef] [PubMed]

M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett. 23, 966-968 (1998).
[CrossRef]

A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28, 2112-2114 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Thin Solid Films

C. C. Hsu, J. Y. Lee, and D. C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491, 91-95 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic illustration of proposed OCT scheme comprising two Michelson interferometers, a single 3 × 3 fiber coupler, three mirrors ( M 0 , M 1 , and M 2 ) and the sample (S).

Fig. 2
Fig. 2

Schematic illustration of optical paths in the sample arm.

Fig. 3
Fig. 3

Schematic illustration showing four surfaces of interest in OCT measurement process.

Fig. 4
Fig. 4

Flow chart of experimental procedure.

Fig. 5
Fig. 5

Schematic illustration showing calibration procedure.

Fig. 6
Fig. 6

Interference envelopes obtained in calibration procedure: (a) with alignment error and (b) with no alignment error.

Fig. 7
Fig. 7

Schematic illustration showing scanning operation.

Fig. 8
Fig. 8

Simulation results obtained for reflection peaks before and after insertion of sample into Arm 0.

Fig. 9
Fig. 9

Rayleigh criterion: (a) two interference patterns can just be recognized; (b) two interference patterns are combined.

Fig. 10
Fig. 10

(a) Four interference signals obtained in Experiment 1: (b) interference signals corresponding to left (A) and right (B) surfaces of sample; (c) interference signals corresponding to mirrors M 0 (C) and M 2 (D).

Fig. 11
Fig. 11

(a) Four interference signals obtained in Experiment 2: (b) interference signals corresponding to left (A) and right (B) surfaces of sample; (c) interference signals corresponding to mirrors M 0 (C) and M 2 (D).

Tables (2)

Tables Icon

Table 1 Comparison of Actual and Measured Values of Group Refractive Index and Thickness of BK7 Glass Sample

Tables Icon

Table 2 Comparison of Actual and Measured Values of Group Refractive Index and Thickness of B270 Glass Sample

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P 2 P 1 = n g s × L ,
P 3 P 4 = ( n g s n g a ) × L ,
n g s = n g a ( P 2 P 1 ) / ( P 2 P 1 P 3 + P 4 ) ,
d 1 = P 2 P 1 = n g s × L ,
d 2 = P 3 P 4 = ( n g s n g a ) × L ,
n g s = n g a ( d 1 ) / ( d 1 d 2 ) .
Δ z = l c 2 = 2 ln 2 π λ 0 2 Δ λ 0.44 λ 0 2 Δ λ .
n g s = n g a d 1 / ( d 1 d 2 ) = n g a t 1 × s p / ( t 1 × s p t 2 × s p ) 1.472 ,
n g s = n g a d 1 / ( d 1 d 2 ) = n g a t 3 × s p / ( t 3 × s p t 4 × s p ) 1.462 ,

Metrics