Abstract

We investigate for suitable methods that enable reliable content-addressable data search in a defocused volume holographic data storage system. Two techniques have been introduced and are shown to overcome the shortcomings of the known methods used to perform content searching in defocused holographic recording geometry. In effect, we remove the deterministic errors that result because of the presence of nonmatching database records, producing almost the same correlation scores as the true targeted correlation scores. Such deterministic errors give rise to erroneous search outcomes and reduce the speed advantage of the parallel holographic data search. We present experimental results and discuss the improvements offered by the two introduced methods in terms of storage density and measured correlation scores. Both the methods of modified-balanced and 25% sparse modulation coded data pages are found to produce good results, negating the undesired correlation characteristics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [CrossRef]
  3. G. W. Burr, S. Kobras, H. Hanssen, H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779–6784 (1999).
    [CrossRef]
  4. G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
    [CrossRef]
  5. B. Das, J. Joseph, K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
    [CrossRef]
  6. R. K. Kostuk, M. P. Bernal Artajona, Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259–269.
  7. L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
    [CrossRef]
  8. R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
    [CrossRef]
  9. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336–2338 (2007).
    [CrossRef] [PubMed]
  10. B. Das, J. Joseph, K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461–5470 (2007).
    [CrossRef] [PubMed]
  11. B. Das, J. Joseph, K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63 (2009).
    [CrossRef]
  12. D. A. Waldman, J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7411708 (12 August 2008).
  13. Q. Ma, K. Ni, Q. He, L. Cao, G. Jin, “Fast associative filtering based on two-dimensional discrete Walsh transform by a volume holographic correlator,” Opt. Express 17, 838–843 (2009).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  15. J.-S. Jang, D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797–1799 (2001).
    [CrossRef]
  16. M. O’Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150–159 (2004).
    [CrossRef]
  17. M.-P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, M. Quintanilla, “Experimental study of the effects of a six-level phase mask on a digital holographic storage system,” Appl. Opt. 37, 2094–2101 (1998).
    [CrossRef]
  18. M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
    [CrossRef]
  19. G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
    [CrossRef]
  20. S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
    [CrossRef]
  21. A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541–546 (2004).
    [CrossRef]
  22. B. M. King, M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000).
    [CrossRef]

2009 (3)

2008 (2)

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

2007 (3)

2005 (1)

R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
[CrossRef]

2004 (3)

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541–546 (2004).
[CrossRef]

M. O’Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150–159 (2004).
[CrossRef]

2002 (2)

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

1998 (1)

Abarzhi, S. I.

S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
[CrossRef]

Bashaw, M. C.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Berger, G.

G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Bernal, M.-P.

Bernal Artajona, M. P.

R. K. Kostuk, M. P. Bernal Artajona, Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259–269.

Burr, G. W.

Cao, L.

Coufal, H.

Das, B.

Denz, C.

G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Dietz, M.

G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Domján, L.

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

Erdei, G.

Fukumoto, A.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Gao, Q.

R. K. Kostuk, M. P. Bernal Artajona, Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259–269.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Göröcs, Z.

Grawert, F.

G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
[CrossRef]

Hanssen, H.

Hara, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

He, Q.

Hesselink, L.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Hirooka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Hoffnagle, J. A.

Jang, J.-S.

Jefferson, C. M.

Jin, G.

John, R.

R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
[CrossRef]

Joseph, J.

B. Das, J. Joseph, K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63 (2009).
[CrossRef]

B. Das, J. Joseph, K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

B. Das, J. Joseph, K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461–5470 (2007).
[CrossRef] [PubMed]

R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
[CrossRef]

D. A. Waldman, J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7411708 (12 August 2008).

King, B. M.

Kobras, S.

G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779–6784 (1999).
[CrossRef]

Koppa, P.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336–2338 (2007).
[CrossRef] [PubMed]

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

Kostuk, R. K.

R. K. Kostuk, M. P. Bernal Artajona, Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259–269.

Liu, H.

S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
[CrossRef]

Lorincz, E.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336–2338 (2007).
[CrossRef] [PubMed]

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541–546 (2004).
[CrossRef]

Ma, Q.

Macfarlane, R. M.

Maltezos, G.

G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
[CrossRef]

Neifeld, M. A.

Ni, K.

O’Callaghan, M.

M. O’Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150–159 (2004).
[CrossRef]

Orlov, S. S.

S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
[CrossRef]

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Quintanilla, M.

Reményi, J.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336–2338 (2007).
[CrossRef] [PubMed]

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

Sarkadi, T.

Shcheglov, K. V.

S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
[CrossRef]

Shelby, R. M.

Shin, D.-H.

Singh, K.

B. Das, J. Joseph, K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63 (2009).
[CrossRef]

B. Das, J. Joseph, K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

B. Das, J. Joseph, K. Singh, “Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461–5470 (2007).
[CrossRef] [PubMed]

R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
[CrossRef]

Süto, A.

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541–546 (2004).
[CrossRef]

Szarvas, G.

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

Tanaka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Toishi, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Tokuyama, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Ujhelyi, F.

Waldman, D. A.

D. A. Waldman, J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7411708 (12 August 2008).

Watanabe, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Appl. Opt. (5)

J. Opt. A: Pure Appl. Opt. (1)

G. Berger, M. Dietz, C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

Opt. Commun. (1)

B. Das, J. Joseph, K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

R. John, J. Joseph, K. Singh, “Holographic data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183–194 (2005).
[CrossRef]

Opt. Lett. (2)

Optik (Jena) (2)

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541–546 (2004).
[CrossRef]

L. Domján, P. Koppa, G. Szarvas, J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382–390 (2002).
[CrossRef]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Proc. SPIE (3)

G. W. Burr, G. Maltezos, F. Grawert, S. Kobras, H. Hanssen H. Coufal, “Using volume holograms to search digital databases,” Proc. SPIE 4459, 311–322 (2002).
[CrossRef]

M. O’Callaghan, “Sorting through the lore of phase mask options: performance measures and practical commercial designs,” Proc. SPIE 5362, 150–159 (2004).
[CrossRef]

S. S. Orlov, K. V. Shcheglov, H. Liu, S. I. Abarzhi, “Error correcting sparse permutation channel codes for digital holographic data storage,” Proc. SPIE 6620, 662026 (2007).
[CrossRef]

Other (4)

R. K. Kostuk, M. P. Bernal Artajona, Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259–269.

D. A. Waldman, J. Joseph, “Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery,” U.S. patent 7411708 (12 August 2008).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for content-addressable memory: SLM, spatial light modulator; M rot , mirror mounted on a precision rotation stage.

Fig. 2
Fig. 2

Measured correlation score versus similarity of the database records for balanced binary data pages: (a) phase-based searching, (b) dc-filtering-based searching.

Fig. 3
Fig. 3

Inner product calculations for the phase-based searching method for two cases of 100% and 0% matching search queries. The pixel distribution considered for the inner product is a very small fraction of the recorded amplitude modulated data page.

Fig. 4
Fig. 4

Measured correlation score versus similarity of the database records for balanced binary data pages: (a) conventional amplitude-based searching, (b) search results for RPM data pages.

Fig. 5
Fig. 5

Measured correlation score versus similarity of the database records when the size of the search query is exactly half of the stored pages: (a) phase-based searching, (b) dc-filtering-based searching, (c) conventional amplitude- based searching, and (d) search results for RPM modulated data pages.

Fig. 6
Fig. 6

Code rate (r) of binary block modulation codes as a function of the block sizes.

Fig. 7
Fig. 7

Measured correlation score versus similarity for modified-balanced modulation coded data pages with phase-based searching: (a) full data pages as search query and (b) search query is exactly half of the actual data page.

Fig. 8
Fig. 8

Measured correlation score versus similarity for modified-balanced modulation coded data pages with dc- filtering-based searching (a) full data pages as search query and (b) search query is exactly half of the actual data page.

Fig. 9
Fig. 9

Measured correlation score versus similarity for 25% coded data pages with dc-filtering-based searching: (a) full data pages as the search query and (b) search query is exactly half of the actual data page.

Fig. 10
Fig. 10

Measured correlation score versus similarity for 25% coded data pages with conventional amplitude-based searching: (a) full data pages as the search query and (b) search query is exactly half of the actual data page.

Tables (1)

Tables Icon

Table 1 List of Possible 4 Bit Balanced Code Words a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| O ( x 3 , y 3 ) + e j k r r | 2 .
P ( x 3 , y 3 ) = { P a ( x 3 , y 3 ) search data page is in amplitude mode P p ( x 3 , y 3 ) search data page is in phase mode P a _ d ( x 3 , y 3 ) search data page is in amplitude mode and a dc-filtering operation in the FT plane .
FT { P ( x 3 , y 3 ) O * ( x 3 , y ) 3 } .
r c = 1 n log 2 ( n m ) = 1 n log 2 ( n ! m ! ( n m ) ! ) .
r c = 1 n log 2 ( 1 K n ! m ! ( n m ) ! ) ,

Metrics